Skip to content

Commit

Permalink
Dataframe queries 3: dense range (#7341)
Browse files Browse the repository at this point in the history
Implements the dense range dataframe APIs.

Examples:
```
cargo r --all-features -p re_dataframe --example range -- /tmp/data.rrd /helix/structure/scaffolding/beads
cargo r --all-features -p re_dataframe --example range -- /tmp/data.rrd /helix/structure/scaffolding/beads /helix/structure/scaffolding/**
```

```rust
use itertools::Itertools as _;

use re_chunk_store::{
    ChunkStore, ChunkStoreConfig, ComponentColumnDescriptor, RangeQueryExpression, Timeline,
    VersionPolicy,
};
use re_dataframe::QueryEngine;
use re_log_types::{ResolvedTimeRange, StoreKind};

fn main() -> anyhow::Result<()> {
    let args = std::env::args().collect_vec();

    let get_arg = |i| {
        let Some(value) = args.get(i) else {
            eprintln!(
                "Usage: {} <path_to_rrd_with_position3ds> <entity_path_pov> [entity_path_expr]",
                args.first().map_or("$BIN", |s| s.as_str())
            );
            std::process::exit(1);
        };
        value
    };

    let path_to_rrd = get_arg(1);
    let entity_path_pov = get_arg(2).as_str();
    let entity_path_expr = args.get(3).map_or("/**", |s| s.as_str());

    let stores = ChunkStore::from_rrd_filepath(
        &ChunkStoreConfig::DEFAULT,
        path_to_rrd,
        VersionPolicy::Warn,
    )?;

    for (store_id, store) in &stores {
        if store_id.kind != StoreKind::Recording {
            continue;
        }

        let cache = re_dataframe::external::re_query::Caches::new(store);
        let engine = QueryEngine {
            store,
            cache: &cache,
        };

        let query = RangeQueryExpression {
            entity_path_expr: entity_path_expr.into(),
            timeline: Timeline::log_tick(),
            time_range: ResolvedTimeRange::new(0, 30),
            pov: ComponentColumnDescriptor::new::<re_types::components::Position3D>(
                entity_path_pov.into(),
            ),
        };

        let query_handle = engine.range(&query, None /* columns */);
        eprintln!("{query}:");
        for batch in query_handle.into_iter() {
            eprintln!("{batch}");
        }
    }

    Ok(())
}
```

* Fixes #7284 

---

Dataframe APIs PR series:
- #7338
- #7339
- #7340
- #7341
- #7345
  • Loading branch information
teh-cmc authored Sep 4, 2024
1 parent caa0654 commit 9a994a0
Show file tree
Hide file tree
Showing 5 changed files with 327 additions and 11 deletions.
2 changes: 1 addition & 1 deletion crates/store/re_chunk_store/src/dataframe.rs
Original file line number Diff line number Diff line change
Expand Up @@ -598,7 +598,7 @@ impl ChunkStore {
/// * second, the time columns in lexical order (`frame_nr`, `log_time`, ...);
/// * third, the component columns in lexical order (`Color`, `Radius, ...`).
///
/// This does not run a full-blown query, but rather just inspects [`Chunk`]-level metadata,
/// This does not run a full-blown query, but rather just inspects `Chunk`-level metadata,
/// which can lead to false positives, but makes this very cheap to compute.
pub fn schema_for_query(&self, query: &QueryExpression) -> Vec<ColumnDescriptor> {
re_tracing::profile_function!(format!("{query:?}"));
Expand Down
62 changes: 62 additions & 0 deletions crates/store/re_dataframe/examples/range.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
use itertools::Itertools as _;

use re_chunk_store::{
ChunkStore, ChunkStoreConfig, ComponentColumnDescriptor, RangeQueryExpression, Timeline,
VersionPolicy,
};
use re_dataframe::QueryEngine;
use re_log_types::{ResolvedTimeRange, StoreKind};

fn main() -> anyhow::Result<()> {
let args = std::env::args().collect_vec();

let get_arg = |i| {
let Some(value) = args.get(i) else {
eprintln!(
"Usage: {} <path_to_rrd_with_position3ds> <entity_path_pov> [entity_path_expr]",
args.first().map_or("$BIN", |s| s.as_str())
);
std::process::exit(1);
};
value
};

let path_to_rrd = get_arg(1);
let entity_path_pov = get_arg(2).as_str();
let entity_path_expr = args.get(3).map_or("/**", |s| s.as_str());

let stores = ChunkStore::from_rrd_filepath(
&ChunkStoreConfig::DEFAULT,
path_to_rrd,
VersionPolicy::Warn,
)?;

for (store_id, store) in &stores {
if store_id.kind != StoreKind::Recording {
continue;
}

let cache = re_dataframe::external::re_query::Caches::new(store);
let engine = QueryEngine {
store,
cache: &cache,
};

let query = RangeQueryExpression {
entity_path_expr: entity_path_expr.into(),
timeline: Timeline::log_tick(),
time_range: ResolvedTimeRange::new(0, 30),
pov: ComponentColumnDescriptor::new::<re_types::components::Position3D>(
entity_path_pov.into(),
),
};

let query_handle = engine.range(&query, None /* columns */);
eprintln!("{query}:");
for batch in query_handle.into_iter() {
eprintln!("{batch}");
}
}

Ok(())
}
13 changes: 3 additions & 10 deletions crates/store/re_dataframe/src/engine.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ use re_chunk_store::{
};
use re_query::Caches;

use crate::LatestAtQueryHandle;
use crate::{LatestAtQueryHandle, RangeQueryHandle};

// ---

Expand All @@ -15,8 +15,6 @@ use crate::LatestAtQueryHandle;
// TODO(cmc): add an `arrow` feature to transportchunk in a follow-up pr and call it a day.
pub type RecordBatch = TransportChunk;

pub struct RangeQueryHandle<'a>(&'a ());

/// A generic handle to a query that is ready to be executed.
pub enum QueryHandle<'a> {
LatestAt(LatestAtQueryHandle<'a>),
Expand Down Expand Up @@ -80,7 +78,7 @@ impl QueryEngine<'_> {
/// * second, the time columns in lexical order (`frame_nr`, `log_time`, ...);
/// * third, the component columns in lexical order (`Color`, `Radius, ...`).
///
/// This does not run a full-blown query, but rather just inspects [`Chunk`]-level metadata,
/// This does not run a full-blown query, but rather just inspects `Chunk`-level metadata,
/// which can lead to false positives, but makes this very cheap to compute.
#[inline]
pub fn schema_for_query(&self, query: &QueryExpression) -> Vec<ColumnDescriptor> {
Expand All @@ -93,7 +91,6 @@ impl QueryEngine<'_> {
/// * [`Self::latest_at`]
/// * [`Self::range`]
#[inline]
#[allow(clippy::unimplemented, clippy::needless_pass_by_value)]
pub fn query(
&self,
query: &QueryExpression,
Expand Down Expand Up @@ -145,15 +142,11 @@ impl QueryEngine<'_> {
/// for a range of data on the `frame` timeline, but still include the `log_time` timeline in
/// the result.
#[inline]
#[allow(clippy::unimplemented, clippy::needless_pass_by_value)]
pub fn range(
&self,
query: &RangeQueryExpression,
columns: Option<Vec<ColumnDescriptor>>,
) -> RangeQueryHandle<'_> {
_ = self;
_ = query;
_ = columns;
unimplemented!("TODO(cmc)")
RangeQueryHandle::new(self, query.clone(), columns)
}
}
2 changes: 2 additions & 0 deletions crates/store/re_dataframe/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,11 @@
mod engine;
mod latest_at;
mod range;

pub use self::engine::{QueryEngine, QueryHandle, RecordBatch};
pub use self::latest_at::LatestAtQueryHandle;
pub use self::range::RangeQueryHandle;

pub mod external {
pub use re_chunk;
Expand Down
259 changes: 259 additions & 0 deletions crates/store/re_dataframe/src/range.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
use std::{collections::VecDeque, sync::OnceLock};

use ahash::HashMap;
use arrow2::{
array::{Array as ArrowArray, ListArray as ArrowListArray},
chunk::Chunk as ArrowChunk,
datatypes::Schema as ArrowSchema,
};
use itertools::Itertools;

use re_chunk::{Chunk, LatestAtQuery, RangeQuery};
use re_chunk_store::{ColumnDescriptor, ComponentColumnDescriptor, RangeQueryExpression};

use crate::{QueryEngine, RecordBatch};

// ---

/// A handle to a range query, ready to be executed.
///
/// Cheaply created via [`QueryEngine::range`].
///
/// See [`RangeQueryHandle::next_page`].
//
// TODO(cmc): pagination support
// TODO(cmc): intra-timestamp decimation support
pub struct RangeQueryHandle<'a> {
/// Handle to the [`QueryEngine`].
pub(crate) engine: &'a QueryEngine<'a>,

/// The original query expression used to instantiate this handle.
pub(crate) query: RangeQueryExpression,

/// The user-specified schema that describes any data returned through this handle, if any.
pub(crate) user_columns: Option<Vec<ColumnDescriptor>>,

/// Internal private state. Lazily computed.
///
/// It is important that handles stay cheap to create.
state: OnceLock<RangeQuerytHandleState>,
}

/// Internal private state. Lazily computed.
struct RangeQuerytHandleState {
/// The final schema.
columns: Vec<ColumnDescriptor>,

/// All the [`Chunk`]s for the active point-of-view.
///
/// These are already sorted and vertically sliced according to the query.
pov_chunks: Option<VecDeque<Chunk>>,
}

impl<'a> RangeQueryHandle<'a> {
pub(crate) fn new(
engine: &'a QueryEngine<'a>,
query: RangeQueryExpression,
user_columns: Option<Vec<ColumnDescriptor>>,
) -> Self {
Self {
engine,
query,
user_columns,
state: Default::default(),
}
}
}

impl RangeQueryHandle<'_> {
/// Lazily initialize internal private state.
///
/// It is important that handles stay cheap to create.
fn init(&self) -> &RangeQuerytHandleState {
self.state.get_or_init(|| {
re_tracing::profile_scope!("init");

let columns = {
re_tracing::profile_scope!("compute schema");

self.user_columns.clone().unwrap_or_else(|| {
self.engine
.store
.schema_for_query(&self.query.clone().into())
})
};

let pov_chunks = {
re_tracing::profile_scope!("gather pov timestamps");

let query = RangeQuery::new(self.query.timeline, self.query.time_range)
.keep_extra_timelines(true) // we want all the timelines we can get!
.keep_extra_components(false);

let results = self.engine.cache.range(
self.engine.store,
&query,
&self.query.pov.entity_path,
[self.query.pov.component_name],
);

results
.components
.into_iter()
.find_map(|(component_name, chunks)| {
(component_name == self.query.pov.component_name).then_some(chunks)
})
.map(Into::into)
};

RangeQuerytHandleState {
columns,
pov_chunks,
}
})
}

/// All results returned by this handle will strictly follow this schema.
///
/// Columns that do not yield any data will still be present in the results, filled with null values.
pub fn schema(&self) -> &[ColumnDescriptor] {
&self.init().columns
}

/// Partially executes the range query until the next natural page of results.
///
/// Returns a single [`RecordBatch`] containing as many rows as available in the page, or
/// `None` if all the dataset has been returned.
/// Each cell in the result corresponds to the latest known value at that particular point in time
/// for each respective `ColumnDescriptor`.
///
/// The schema of the returned [`RecordBatch`] is guaranteed to match the one returned by
/// [`Self::schema`].
/// Columns that do not yield any data will still be present in the results, filled with null values.
///
/// "Natural pages" refers to pages of data that match 1:1 to the underlying storage.
/// The size of each page cannot be known in advance, as it depends on unspecified
/// implementation details.
/// This is the most performant way to iterate over the dataset.
///
/// ```ignore
/// while let Some(batch) = query_handle.next_page() {
/// // …
/// }
/// ```
pub fn next_page(&mut self) -> Option<RecordBatch> {
re_tracing::profile_function!(format!("{:?}", self.query));

_ = self.init();
let pov_chunk = self.state.get_mut()?.pov_chunks.as_mut()?.pop_front()?;
let pov_time_column = pov_chunk.timelines().get(&self.query.timeline)?;
let columns = self.schema();

// TODO(cmc): There are more efficient, albeit infinitely more complicated ways to do this.
// Let's first implement all features (multi-PoV, pagination, timestamp streaming, etc) and
// see if this ever becomes an issue before going down this road.
//
// TODO(cmc): Opportunities for parallelization, if it proves to be a net positive in practice.
let list_arrays: HashMap<&ComponentColumnDescriptor, ArrowListArray<i32>> = {
re_tracing::profile_scope!("queries");

columns
.iter()
.filter_map(|descr| match descr {
ColumnDescriptor::Component(descr) => Some(descr),
_ => None,
})
.filter_map(|descr| {
let arrays = pov_time_column
.times()
.map(|time| {
let query = LatestAtQuery::new(self.query.timeline, time);

let results = self.engine.cache.latest_at(
self.engine.store,
&query,
&descr.entity_path,
[descr.component_name],
);

results
.components
.get(&descr.component_name)
.and_then(|unit| {
unit.component_batch_raw(&descr.component_name).clone()
})
})
.collect_vec();
let arrays = arrays
.iter()
.map(|array| array.as_ref().map(|array| &**array as &dyn ArrowArray))
.collect_vec();

let list_array =
re_chunk::util::arrays_to_list_array(descr.datatype.clone(), &arrays);

if cfg!(debug_assertions) {
#[allow(clippy::unwrap_used)] // want to crash in dev
Some((descr, list_array.unwrap()))
} else {
// NOTE: Technically cannot ever happen, but I'd rather that than an uwnrap.
list_array.map(|list_array| (descr, list_array))
}
})
.collect()
};

// NOTE: Keep in mind this must match the ordering specified by `Self::schema`.
let packed_arrays = {
re_tracing::profile_scope!("packing");

columns
.iter()
.map(|descr| match descr {
ColumnDescriptor::Control(_descr) => pov_chunk.row_ids_array().to_boxed(),

ColumnDescriptor::Time(descr) => {
let time_column = pov_chunk.timelines().get(&descr.timeline).cloned();
time_column.map_or_else(
|| {
arrow2::array::new_null_array(
descr.datatype.clone(),
pov_chunk.num_rows(),
)
},
|time_column| time_column.times_array().to_boxed(),
)
}

ColumnDescriptor::Component(descr) => list_arrays.get(descr).map_or_else(
|| {
arrow2::array::new_null_array(
descr.datatype.clone(),
pov_time_column.num_rows(),
)
},
|list_array| list_array.to_boxed(),
),
})
.collect_vec()
};

Some(RecordBatch {
schema: ArrowSchema {
fields: columns
.iter()
.map(ColumnDescriptor::to_arrow_field)
.collect(),
metadata: Default::default(),
},
data: ArrowChunk::new(packed_arrays),
})
}
}

impl<'a> RangeQueryHandle<'a> {
#[allow(clippy::should_implement_trait)] // we need an anonymous closure, this won't work
pub fn into_iter(mut self) -> impl Iterator<Item = RecordBatch> + 'a {
std::iter::from_fn(move || self.next_page())
}
}

0 comments on commit 9a994a0

Please sign in to comment.