Skip to content
/ ctxpro Public

Data and annotation toolkit for finding translation ambiguities in bitext

License

Notifications You must be signed in to change notification settings

rewicks/ctxpro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

Machine translation research is primarily focused on the sentence-level paradigm. In efforts to push the field towards translation in context, we release ctxpro which can extract parallel sentences which require additional document-context to translate.

Further, we release evaluation sets (release/jsons) as a resource to the community.

For more information, please read our paper:

Quick start

ctxpro is available via PyPi:

pip install ctxpro

Scoring

You can use ctxpro to evaluation your machine translation outputs.

If using one of our evaluation sets (such as the EN-DE Gender test set shown below), it is a simple call:

# We can read via standard input
cat translations.gender.en-de.test.txt | ctxpro score -e en-de/gender/test -l de

# Or from a file
ctxpro score -t translations.gender.en-de.test.txt -e en-de/gender/test -l de

If you want to replicate the scores form our paper, there is a script in paper/score.sh which contains these commands for each [mini] test set.

Extraction

You may wish to extract the surrounding contexts to use as input to your machine translation model. We parameterize this as the amount of preceding context that you wish to extract in terms of number of tokens or sentences.

For the evaluation sets we release, we have extracted a default amount of context (up to 10 sentences of 256 words) which are available under release/inputs/. The contexts we use for the paper can be found in paper/inputs. These contain an "<eos> " separator, but were removed before passing to DeepL.

If you wish to extract a different context amount, you will need to set up the OpenSubtitles data for your preferred language pair (see section below).

To extract contexts from a specific evaluation set, you may use the following command:

# Extract maximum 5 sentences or 128 tokens
ctxpro extract -i data/opensubs/de-en/de-en.tsv -e en-de/gender/test -s 5 -t 128 --joining_string "<eos> "

Setting up OpenSubtitles

You have to setup OpenSubtitles for the language you care about. This includes downloading, unpacking, and then expanding into a format that organizes the files by year. Run the file data/opensubtitles/setup.sh to do this. It takes one argument, the language pair, e.g.,

cd data/opensubs
./setup.sh de-en

Note that OpenSubtitles does the language-pair in alphabetical order, so the language pairs we support are de-en, en-es, en-fr, en-it, en-pl, en-pt, and en-ru. We assume an English source, so you may have to reverse the source and target columns in de-en.tsv (i.e. with something like awk -F'\t' '{print $1 "\t" $3 "\t" $2}') when piping into ctxpro.

Identify New Examples

Identifying new examples requires more functionality than either extraction or scoring. To install the packages for identification, you will need to install the ctxpro[identify] package:

# There is an incompatability with the networkx versioning, so you will also need to update after installation.
pip install ctxpro[identify]; pip install -U networkx

If you would like to apply our rules to new data, it is rather simple. For example, you can easily apply our rules to wmt test sets using sacrebleu which will echo documents in the appropriate format.

# Read directly from standard input

sacrebleu -t wmt22 -l en-de --echo docid src ref | ctxpro identify -r DE_GENDER DE_FORMALITY DE_AUXILIARY -t de


# Or read from file(s)

sacrebleu -t wmt22 -l en-de --echo docid src ref > wmt22.en-de
sacrebleu -t wmt21 -l en-de --echo docid src ref > wmt21.en-de

ctxpro -i wmt22.en-de wmt21.en-de -r DE_GENDER DE_FORMALITY DE_AUXILIARY -t de

Rules

A series of predefined rules are provided as defined in the original paper. They are also located in the data/rules folder.

Alternatively, you can create your own. If you follow our structure, you can write a .json file (examples in data/rules) which the ctxpro/checkers.py classes will follow.

For the most flexibility, you can add your own system of criteria to the ctxpro/checkers.py file.

Animacy

As you may notice, the extract pipeline assumes English as the source. Animacy is the sole category here where the ambiguity exists when translating into English as the target language. In our paper, we leverage the fact that the Gender ambiguity out-of-English is parallel to the Animacy ambiguity into-English. To identify Animacy ambiguities, you can extract the Gender examples and reverse the language direction in the resulting .json file with the script in scripts/reverse.py. An example showing the reverses we made to create the evaluation sets is in scripts/reverse.sh.

About

Data and annotation toolkit for finding translation ambiguities in bitext

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published