To watch the docs more detail here.
- General Info
- Features
- Technologies Used
- Usage
- Screenshots
- Structure
- Project Status
- Room for Improvement
- Acknowledgements
- Contact
A simple Batik Pattern Classification using Decision Tree and Global Features Extraction.
- Upload your batik pattern dataset in 'dataset' folder and analyze it by using "CREATE" command
- Train your dataset by using "TRAIN" command
- The result of classification between the uploaded photo with the database class
- Download the result (tree image) as a DOT extension file
- OpenCV2 - version 4.5.4
- numpy - version 1.21.3
- sklearn - version 1.0.1
- h5py - version 3.6.0
- mahotas - version 1.4.13
Note: The version of the libraries above is the version that we used in this project. You can use the latest version of the libraries.
- clone this repository to your local directory.
- open the terminal and go to the directory of the project.
- make sure you have installed all the libraries that we used in this project.
- go to 'main.py' file and run it.
- follow the instruction in the terminal.
Figure 1. Main Menu
Figure 2. Ceplok Testcase Image
Figure 3. Lereng Testcase Image
Figure 4. Nitik Testcase Image
Figure 5. Parang Testcase Image
Figure 6. Decision Tree Image
│ create_dataset.py
│ formatting_output.py
│ main.py
│ README.md
│ training_dataset.py
│
├───dataset
│ ├───test
│ │ 1.jpg
│ │ 2.jpg
│ │ 3.jpg
│ │ 4.jpg
│ │
│ └───train
│ ├───Ceplok
│ │
│ ├───Lereng
│ │
│ ├───Nitik
│ │
│ └───Parang
│
├───image
│ Ceplok_testcase.png
│ Decision_tree.png
│ lereng_testcase.png
│ main.png
│ nitik_testcase.png
│ parang_testcase.png
│
├───processing
│ data.h5
│ labels.h5
│
└───__pycache__
Project is: complete
Room for Improvement:
- Adding more batik pattern of all regions in Indonesia
- Thanks To Allah SWT
- This project was inspired by an Article