Skip to content
/ relod Public

An efficient remote-onboard architecture for real-time Reinforcement Learning

License

Notifications You must be signed in to change notification settings

rlai-lab/relod

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ReLoD: The Remote-Local Distributed System for Real-time Reinforcement Learning on Vision-Based Robotics Tasks

ReLoD uses a wired local and a wireless remote computer to perform real-time learning, an appealing setting for industrial learning systems. It is a generalist RL system for learning with real robots from scratch! Check out how ReLoD learns to perform vision-based tasks on UR5 and Roomba (iRobot Create 2): Youtube video

Supported Algorithms

  • Soft Actor Critic (SAC)
  • Proximal Policy Optimization (PPO)

N.B: All vision-based experiments use Random Augmented Data (RAD) to improve sample efficiency

Supported Tasks

UR5-VisualReacher
UR-Reacher
Franka-VisualReacher
Franka-VisualReacher
Create-Reacher
Create-Reacher
Franka-VisualReacher
Vector-ChargerDetector

Choice of hyper-parameters for UR5 experiments

Hyper-parameter Value
Replay buffer 100K
Actor step size 3e-4
Critic step size 3e-4
Entropy coefficient step size 3e-4
Batch size 256
Discount factor 0.99
Update every $k$ steps 2
Num. update epochs every $k^{th}$ step 1
Actor MLP hidden sizes [512 512]
Critic MLP hidden sizes [512 512]
Warm-up time steps 1000
Adam optimizer betas [0.9, 0.999]
Initial temperature 0.1
Neural network activation ReLU

Installation instructions

  1. Download Mujoco and license files to ~/.mujoco
  2. Install miniconda or anaconda
  3. Create a virtual environment:
conda create --name myenv python=3.6    # Python 3.6 is necessary
conda activate myenv
  1. Add the following to ~/.bashrc:
conda activate myenv
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/<username>/.mujoco/mjpro210/bin   # Change based on mujoco version
export MUJOCO_GL="egl"  # System specific

and run:

source ~/.bashrc
  1. Install packages with:
pip install -r requirements.txt
pip install .

Run experiment

 python task_ur5_visual_reacher.py  --work_dir "./results" --mode 'l' --seed 0 --env_steps 200100 

Franka-VisualReacher

The code for the Franka task can be found in this branch.

Cite

Wang, Y.⋆, Vasan, G.⋆, & Mahmood, A. R. (2023). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In Proceedings of the 2023 International Conference on Robotics and Automation (ICRA).

About

An efficient remote-onboard architecture for real-time Reinforcement Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published