Skip to content

Conduct Statistical Significance testing using ANOVA, MANOVA and T-Test in R programming language

License

Notifications You must be signed in to change notification settings

rmodi6/statistical-analysis-using-R

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

statistical-analysis-using-R

Conduct Statistical Significance testing using ANOVA, MANOVA and T-Test in R programming language on 2 sample datasets. Additional information regarding the experiment related to the datasets can be found in the following paper.

François Guimbretière, Andrew Martin, and Terry Winograd, Benefits of Merging Command Selection and Direct Manipulation. Transactions on Human-Computer Interaction, 12(3), pp 460 – 476, 2005

The goal of the project is to carry out statistical significance tests to analyse the effect of independent variable menu on dependent variables time and error i.e. to figure out if menu types have a significant effect on time and error. Menu types are 4 different types of menu (controlmenu, flowmenu, toolpalette and toolglass) that were tested on a group of users and their time to use the menu as well as any errors while using the menu were noted. Conducting significance tests like ANOVA, MANOVA and T-Tests on this dataset helps us to determine if menu type has a significant effect on a variable and which menu type has the most significant effect. Also perform visualizations to understand the results better.

About

Conduct Statistical Significance testing using ANOVA, MANOVA and T-Test in R programming language

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages