Skip to content

Commit

Permalink
Revert "Revert "Switch to per-thread default stream (dmlc#9396)" (dml…
Browse files Browse the repository at this point in the history
…c#9413)"

This reverts commit 3a99961.
  • Loading branch information
rongou committed Jul 25, 2023
1 parent 3a99961 commit 50d926f
Show file tree
Hide file tree
Showing 8 changed files with 25 additions and 35 deletions.
1 change: 1 addition & 0 deletions cmake/Utils.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,7 @@ endfunction(format_gencode_flags flags)
# Set CUDA related flags to target. Must be used after code `format_gencode_flags`.
function(xgboost_set_cuda_flags target)
target_compile_options(${target} PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:--default-stream per-thread>
$<$<COMPILE_LANGUAGE:CUDA>:--expt-extended-lambda>
$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>
$<$<COMPILE_LANGUAGE:CUDA>:${GEN_CODE}>
Expand Down
27 changes: 10 additions & 17 deletions src/collective/nccl_device_communicator.cu
Original file line number Diff line number Diff line change
Expand Up @@ -44,16 +44,12 @@ NcclDeviceCommunicator::NcclDeviceCommunicator(int device_ordinal, bool needs_sy
nccl_unique_id_ = GetUniqueId();
dh::safe_cuda(cudaSetDevice(device_ordinal_));
dh::safe_nccl(ncclCommInitRank(&nccl_comm_, world_size_, nccl_unique_id_, rank_));
dh::safe_cuda(cudaStreamCreate(&cuda_stream_));
}

NcclDeviceCommunicator::~NcclDeviceCommunicator() {
if (world_size_ == 1) {
return;
}
if (cuda_stream_) {
dh::safe_cuda(cudaStreamDestroy(cuda_stream_));
}
if (nccl_comm_) {
dh::safe_nccl(ncclCommDestroy(nccl_comm_));
}
Expand Down Expand Up @@ -123,8 +119,8 @@ ncclRedOp_t GetNcclRedOp(Operation const &op) {

template <typename Func>
void RunBitwiseAllreduce(char *out_buffer, char const *device_buffer, Func func, int world_size,
std::size_t size, cudaStream_t stream) {
dh::LaunchN(size, stream, [=] __device__(std::size_t idx) {
std::size_t size) {
dh::LaunchN(size, [=] __device__(std::size_t idx) {
auto result = device_buffer[idx];
for (auto rank = 1; rank < world_size; rank++) {
result = func(result, device_buffer[rank * size + idx]);
Expand All @@ -142,25 +138,22 @@ void NcclDeviceCommunicator::BitwiseAllReduce(void *send_receive_buffer, std::si

// First gather data from all the workers.
dh::safe_nccl(ncclAllGather(send_receive_buffer, device_buffer, count, GetNcclDataType(data_type),
nccl_comm_, cuda_stream_));
nccl_comm_, dh::DefaultStream()));
if (needs_sync_) {
dh::safe_cuda(cudaStreamSynchronize(cuda_stream_));
dh::DefaultStream().Sync();
}

// Then reduce locally.
auto *out_buffer = static_cast<char *>(send_receive_buffer);
switch (op) {
case Operation::kBitwiseAND:
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_and<char>(), world_size_, size,
cuda_stream_);
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_and<char>(), world_size_, size);
break;
case Operation::kBitwiseOR:
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_or<char>(), world_size_, size,
cuda_stream_);
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_or<char>(), world_size_, size);
break;
case Operation::kBitwiseXOR:
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_xor<char>(), world_size_, size,
cuda_stream_);
RunBitwiseAllreduce(out_buffer, device_buffer, thrust::bit_xor<char>(), world_size_, size);
break;
default:
LOG(FATAL) << "Not a bitwise reduce operation.";
Expand All @@ -179,7 +172,7 @@ void NcclDeviceCommunicator::AllReduce(void *send_receive_buffer, std::size_t co
} else {
dh::safe_nccl(ncclAllReduce(send_receive_buffer, send_receive_buffer, count,
GetNcclDataType(data_type), GetNcclRedOp(op), nccl_comm_,
cuda_stream_));
dh::DefaultStream()));
}
allreduce_bytes_ += count * GetTypeSize(data_type);
allreduce_calls_ += 1;
Expand All @@ -206,7 +199,7 @@ void NcclDeviceCommunicator::AllGatherV(void const *send_buffer, size_t length_b
for (int32_t i = 0; i < world_size_; ++i) {
size_t as_bytes = segments->at(i);
dh::safe_nccl(ncclBroadcast(send_buffer, receive_buffer->data().get() + offset, as_bytes,
ncclChar, i, nccl_comm_, cuda_stream_));
ncclChar, i, nccl_comm_, dh::DefaultStream()));
offset += as_bytes;
}
dh::safe_nccl(ncclGroupEnd());
Expand All @@ -217,7 +210,7 @@ void NcclDeviceCommunicator::Synchronize() {
return;
}
dh::safe_cuda(cudaSetDevice(device_ordinal_));
dh::safe_cuda(cudaStreamSynchronize(cuda_stream_));
dh::DefaultStream().Sync();
}

} // namespace collective
Expand Down
1 change: 0 additions & 1 deletion src/collective/nccl_device_communicator.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,6 @@ class NcclDeviceCommunicator : public DeviceCommunicator {
int const world_size_;
int const rank_;
ncclComm_t nccl_comm_{};
cudaStream_t cuda_stream_{};
ncclUniqueId nccl_unique_id_{};
size_t allreduce_bytes_{0}; // Keep statistics of the number of bytes communicated.
size_t allreduce_calls_{0}; // Keep statistics of the number of reduce calls.
Expand Down
2 changes: 1 addition & 1 deletion src/common/device_helpers.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -1176,7 +1176,7 @@ inline void CUDAEvent::Record(CUDAStreamView stream) { // NOLINT
dh::safe_cuda(cudaEventRecord(event_, cudaStream_t{stream}));
}

inline CUDAStreamView DefaultStream() { return CUDAStreamView{cudaStreamLegacy}; }
inline CUDAStreamView DefaultStream() { return CUDAStreamView{cudaStreamPerThread}; }

class CUDAStream {
cudaStream_t stream_;
Expand Down
4 changes: 2 additions & 2 deletions src/common/hist_util.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -134,12 +134,12 @@ void LaunchGetColumnSizeKernel(std::int32_t device, IterSpan<BatchIt> batch_iter
CHECK(!force_use_u64);
auto kernel = GetColumnSizeSharedMemKernel<kBlockThreads, std::uint32_t, BatchIt>;
auto grid_size = EstimateGridSize<kBlockThreads>(device, kernel, required_shared_memory);
dh::LaunchKernel{grid_size, kBlockThreads, required_shared_memory, dh::DefaultStream()}(
dh::LaunchKernel{grid_size, kBlockThreads, required_shared_memory}(
kernel, batch_iter, is_valid, out_column_size);
} else {
auto kernel = GetColumnSizeSharedMemKernel<kBlockThreads, std::size_t, BatchIt>;
auto grid_size = EstimateGridSize<kBlockThreads>(device, kernel, required_shared_memory);
dh::LaunchKernel{grid_size, kBlockThreads, required_shared_memory, dh::DefaultStream()}(
dh::LaunchKernel{grid_size, kBlockThreads, required_shared_memory}(
kernel, batch_iter, is_valid, out_column_size);
}
} else {
Expand Down
2 changes: 0 additions & 2 deletions src/tree/gpu_hist/row_partitioner.cu
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,10 @@ RowPartitioner::RowPartitioner(int device_idx, size_t num_rows)
dh::safe_cuda(cudaSetDevice(device_idx_));
ridx_segments_.emplace_back(NodePositionInfo{Segment(0, num_rows)});
thrust::sequence(thrust::device, ridx_.data(), ridx_.data() + ridx_.size());
dh::safe_cuda(cudaStreamCreate(&stream_));
}

RowPartitioner::~RowPartitioner() {
dh::safe_cuda(cudaSetDevice(device_idx_));
dh::safe_cuda(cudaStreamDestroy(stream_));
}

common::Span<const RowPartitioner::RowIndexT> RowPartitioner::GetRows(bst_node_t nidx) {
Expand Down
21 changes: 10 additions & 11 deletions src/tree/gpu_hist/row_partitioner.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ template <typename RowIndexT, typename OpT, typename OpDataT>
void SortPositionBatch(common::Span<const PerNodeData<OpDataT>> d_batch_info,
common::Span<RowIndexT> ridx, common::Span<RowIndexT> ridx_tmp,
common::Span<bst_uint> d_counts, std::size_t total_rows, OpT op,
dh::device_vector<int8_t>* tmp, cudaStream_t stream) {
dh::device_vector<int8_t>* tmp) {
dh::LDGIterator<PerNodeData<OpDataT>> batch_info_itr(d_batch_info.data());
WriteResultsFunctor<OpDataT> write_results{batch_info_itr, ridx.data(), ridx_tmp.data(),
d_counts.data()};
Expand All @@ -135,12 +135,12 @@ void SortPositionBatch(common::Span<const PerNodeData<OpDataT>> d_batch_info,
size_t temp_bytes = 0;
if (tmp->empty()) {
cub::DeviceScan::InclusiveScan(nullptr, temp_bytes, input_iterator, discard_write_iterator,
IndexFlagOp(), total_rows, stream);
IndexFlagOp(), total_rows);
tmp->resize(temp_bytes);
}
temp_bytes = tmp->size();
cub::DeviceScan::InclusiveScan(tmp->data().get(), temp_bytes, input_iterator,
discard_write_iterator, IndexFlagOp(), total_rows, stream);
discard_write_iterator, IndexFlagOp(), total_rows);

constexpr int kBlockSize = 256;

Expand All @@ -149,7 +149,7 @@ void SortPositionBatch(common::Span<const PerNodeData<OpDataT>> d_batch_info,
const int grid_size = xgboost::common::DivRoundUp(total_rows, kBlockSize * kItemsThread);

SortPositionCopyKernel<kBlockSize, RowIndexT, OpDataT>
<<<grid_size, kBlockSize, 0, stream>>>(batch_info_itr, ridx, ridx_tmp, total_rows);
<<<grid_size, kBlockSize, 0>>>(batch_info_itr, ridx, ridx_tmp, total_rows);
}

struct NodePositionInfo {
Expand Down Expand Up @@ -221,7 +221,6 @@ class RowPartitioner {
dh::device_vector<int8_t> tmp_;
dh::PinnedMemory pinned_;
dh::PinnedMemory pinned2_;
cudaStream_t stream_;

public:
RowPartitioner(int device_idx, size_t num_rows);
Expand Down Expand Up @@ -278,7 +277,7 @@ class RowPartitioner {
}
dh::safe_cuda(cudaMemcpyAsync(d_batch_info.data().get(), h_batch_info.data(),
h_batch_info.size() * sizeof(PerNodeData<OpDataT>),
cudaMemcpyDefault, stream_));
cudaMemcpyDefault));

// Temporary arrays
auto h_counts = pinned_.GetSpan<bst_uint>(nidx.size(), 0);
Expand All @@ -287,12 +286,12 @@ class RowPartitioner {
// Partition the rows according to the operator
SortPositionBatch<RowIndexT, UpdatePositionOpT, OpDataT>(
dh::ToSpan(d_batch_info), dh::ToSpan(ridx_), dh::ToSpan(ridx_tmp_), dh::ToSpan(d_counts),
total_rows, op, &tmp_, stream_);
total_rows, op, &tmp_);
dh::safe_cuda(cudaMemcpyAsync(h_counts.data(), d_counts.data().get(), h_counts.size_bytes(),
cudaMemcpyDefault, stream_));
cudaMemcpyDefault));
// TODO(Rory): this synchronisation hurts performance a lot
// Future optimisation should find a way to skip this
dh::safe_cuda(cudaStreamSynchronize(stream_));
dh::DefaultStream().Sync();

// Update segments
for (size_t i = 0; i < nidx.size(); i++) {
Expand Down Expand Up @@ -327,13 +326,13 @@ class RowPartitioner {
dh::TemporaryArray<NodePositionInfo> d_node_info_storage(ridx_segments_.size());
dh::safe_cuda(cudaMemcpyAsync(d_node_info_storage.data().get(), ridx_segments_.data(),
sizeof(NodePositionInfo) * ridx_segments_.size(),
cudaMemcpyDefault, stream_));
cudaMemcpyDefault));

constexpr int kBlockSize = 512;
const int kItemsThread = 8;
const int grid_size = xgboost::common::DivRoundUp(ridx_.size(), kBlockSize * kItemsThread);
common::Span<const RowIndexT> d_ridx(ridx_.data().get(), ridx_.size());
FinalisePositionKernel<kBlockSize><<<grid_size, kBlockSize, 0, stream_>>>(
FinalisePositionKernel<kBlockSize><<<grid_size, kBlockSize, 0>>>(
dh::ToSpan(d_node_info_storage), d_ridx, d_out_position, op);
}
};
Expand Down
2 changes: 1 addition & 1 deletion tests/cpp/tree/gpu_hist/test_row_partitioner.cu
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ void TestSortPositionBatch(const std::vector<int>& ridx_in, const std::vector<Se
dh::device_vector<int8_t> tmp;
SortPositionBatch<uint32_t, decltype(op), int>(dh::ToSpan(d_batch_info), dh::ToSpan(ridx),
dh::ToSpan(ridx_tmp), dh::ToSpan(counts),
total_rows, op, &tmp, nullptr);
total_rows, op, &tmp);

auto op_without_data = [=] __device__(auto ridx) { return ridx % 2 == 0; };
for (size_t i = 0; i < segments.size(); i++) {
Expand Down

0 comments on commit 50d926f

Please sign in to comment.