Skip to content

Commit

Permalink
Merge pull request ggerganov#85 from python273/export-llama-without-l…
Browse files Browse the repository at this point in the history
…lama

Export llama without llama
  • Loading branch information
karpathy authored Jul 25, 2023
2 parents 614bf91 + 4d1fa2f commit 5bcd19a
Showing 1 changed file with 88 additions and 65 deletions.
153 changes: 88 additions & 65 deletions export_meta_llama_bin.py
Original file line number Diff line number Diff line change
@@ -1,91 +1,114 @@
"""
This script exports the Llama 2 weights in llama2c.bin format.
"""
import sys
import struct
from pathlib import Path
import json

Place it into the root directory of:
https://github.com/facebookresearch/llama
import torch

And then run it similar to their other examples, via torchrun sadly:
torchrun --nproc_per_node 1 export_meta_llama_bin.py
"""
from model import precompute_freqs_cis

from llama import Llama

# -----------------------------------------------------------------------------
def export(self, filepath='model.bin'):
def export(p, state_dict, filepath='model.bin'):
"""export the model weights in fp32 into .bin file to be read from C"""

f = open(filepath, 'wb')
import struct
import numpy as np

def serialize(t):
d = t.detach().cpu().view(-1).numpy().astype(np.float32)
b = struct.pack(f'{len(d)}f', *d)
f.write(b)
def serialize(key):
print(f"writing {key}...")
t = state_dict[key].contiguous().view(-1).type(torch.float32).numpy()
f.write(memoryview(t))
del state_dict[key]

# first write out the header
hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0]
p = self.params
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
n_kv_heads, -p.vocab_size, p.max_seq_len)
hidden_dim = state_dict['layers.0.feed_forward.w1.weight'].shape[0]
p['vocab_size'] = 32000
p['max_seq_len'] = 2048

n_kv_heads = p.get('n_kv_heads') or p['n_heads']
header = struct.pack(
'iiiiiii',
p['dim'], hidden_dim, p['n_layers'], p['n_heads'],
n_kv_heads, -p['vocab_size'], p['max_seq_len']
)
# NOTE ABOVE: -ve vocab_size is indicating that the classifier weights are present
# in the checkpoint and should be loaded.
f.write(header)

# next write out the embedding weights
print("writing tok_embeddings...")
serialize(self.tok_embeddings.weight)
serialize('tok_embeddings.weight')

# now all the layers
# attention weights
for i, layer in enumerate(self.layers):
print(f"writing attention_norm layer {i}...")
serialize(layer.attention_norm.weight)
for i, layer in enumerate(self.layers):
print(f"writing attention.wq layer {i}...")
serialize(layer.attention.wq.weight)
for i, layer in enumerate(self.layers):
print(f"writing attention.wk layer {i}...")
serialize(layer.attention.wk.weight)
for i, layer in enumerate(self.layers):
print(f"writing attention.wv layer {i}...")
serialize(layer.attention.wv.weight)
for i, layer in enumerate(self.layers):
print(f"writing attention.wo layer {i}...")
serialize(layer.attention.wo.weight)
for i in range(p['n_layers']): serialize(f'layers.{i}.attention_norm.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wq.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wk.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wv.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wo.weight')
# ffn weights
for i, layer in enumerate(self.layers):
print(f"writing ffn_norm layer {i}...")
serialize(layer.ffn_norm.weight)
for i, layer in enumerate(self.layers):
print(f"writing feed_forward.w1 layer {i}...")
serialize(layer.feed_forward.w1.weight)
for i, layer in enumerate(self.layers):
print(f"writing feed_forward.w2 layer {i}...")
serialize(layer.feed_forward.w2.weight)
for i, layer in enumerate(self.layers):
print(f"writing feed_forward.w3 layer {i}...")
serialize(layer.feed_forward.w3.weight)
for i in range(p['n_layers']): serialize(f'layers.{i}.ffn_norm.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w1.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w2.weight')
for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w3.weight')

# final rmsnorm
print("writing final rmsnorm, classifier and freq_cis...")
serialize(self.norm.weight)
serialize('norm.weight')
# freqs_cis
serialize(self.freqs_cis.real[:p.max_seq_len])
serialize(self.freqs_cis.imag[:p.max_seq_len])
freqs_cis = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2)
state_dict['freqs_cis.real'] = freqs_cis.real[:p['max_seq_len']]
state_dict['freqs_cis.imag'] = freqs_cis.imag[:p['max_seq_len']]
serialize('freqs_cis.real')
serialize('freqs_cis.imag')

# finally write the output weights
serialize(self.output.weight)
serialize('output.weight')

# write to binary file
f.close()
print(f"wrote {filepath}")
# -----------------------------------------------------------------------------

# init Llama as normal
generator = Llama.build(
ckpt_dir="llama-2-7b",
tokenizer_path="tokenizer.model",
max_seq_len=4096,
max_batch_size=1,
)
export(generator.model, "llama2_7b.bin")


def concat_weights(models):
state_dict = {}
for name in list(models[0]):
tensors = [model[name] for model in models]
if len(tensors) == 1 or len(tensors[0].shape) == 1:
state_dict[name] = tensors[0]
continue
is_axis_1 = (
name.startswith('tok_embeddings.')
or name.endswith('.attention.wo.weight')
or name.endswith('.feed_forward.w2.weight')
)
axis = 1 if is_axis_1 else 0
state_dict[name] = torch.cat(tensors, dim=axis)
for model in models:
del model[name]
return state_dict


def load_and_export(model_path, output_path):
with open(model_path + 'params.json') as f:
params = json.load(f)
print(params)

model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth')))
models = []
for i in model_paths:
print(f'Loading {i}')
models.append(torch.load(i, map_location='cpu'))

state_dict = concat_weights(models)
del models
export(params, state_dict, output_path)


if __name__ == '__main__':
if len(sys.argv) == 1:
print('[Llama model folder path] [output path]')
exit()

model_path = sys.argv[1]
output_path = sys.argv[2]
load_and_export(model_path, output_path)

0 comments on commit 5bcd19a

Please sign in to comment.