Source code for CIKM 2019 paper "Temporal Network Embedding with Micro- and Macro-dynamics".
- Python 2.7
- numpy
- scipy
- PyTorch (0.3.0)
- My machine with two GPUs (NVIDIA GTX-1080 *2) and two CPUs (Intel Xeon E5-2690 * 2)
The datasets are also available at Google Drive.
MMDNE/
├── code
│ ├── DataHelper.py: load and process data for MMDNE
│ ├── Evaluation.py: evaluate the performance of MMDNE (e.g., classification)
│ └── MMDNE.py: model architecture and training
├── data
│ └── dblp
│ ├── dblp.txt: each line is a temporal edge with the format (node1 \t node2 \t timestamp)
│ ├── node2label.txt: node label data with the format (node_name, label)
│ └── Tmall
│ ├── tmall.txt: each line is a temporal edge with the format (node1 \t node2 \t timestamp)
│ ├── node2label.txt: node label data with the format (node_name, label)
│ └── Eucore: will be available soon!
└── res
│ └── dblp
│ └──
├── README.md
python MMDNE.py
@inproceedings{Yuanfu2019MMDNE,
title={Temporal Network Embedding with Micro- and Macro-dynamics},
author={Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye.}
booktitle={Proceedings of CIKM},
year={2019}
}