-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c5da2ea
commit 7b1e100
Showing
9 changed files
with
561 additions
and
548 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
utils::globalVariables(c("L","median","survey_type","inits")) | ||
utils::globalVariables(c("L","median","survey_type","inits","value")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,64 +1,65 @@ | ||
test_that("detectionCalculate input checks work", { | ||
#' @srrstats {G5.2,G5.2b} Tests the assure function input checks are behaving | ||
#' as expected. | ||
# run joint model to do tests with | ||
model1 <- suppressWarnings({jointModel(data = gobyData, | ||
cov = c('Filter_time','Salinity'), | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
model2 <- suppressWarnings({jointModel(data = greencrabData,family = 'negbin', | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
#1. make sure model fit is of class stanfit | ||
expect_error(detectionCalculate(as.matrix(model1$model), mu = c(0.1, 0.5), | ||
cov.val = c(0,0)), | ||
"modelfit must be of class 'stanfit'.") | ||
|
||
#2. make sure ci is valid | ||
expect_error(detectionCalculate(model1$model, mu = c('0', 0.5), | ||
cov.val = c(0,0)), | ||
"mu must be a numeric vector of positive values") | ||
|
||
#3. make sure mu is a numeric vector of positive values | ||
expect_error(detectionCalculate(model1$model, mu = c(0, 0.5), | ||
cov.val = c(0,0)), | ||
"mu must be a numeric vector of positive values") | ||
|
||
#4. make sure probability is a numeric value between 0 and 1 | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0), probability = 1.05), | ||
"probability must be a numeric value between 0 and 1") | ||
|
||
#5. cov.val is numeric, if provided | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c('0',0)), | ||
"cov.val must be a numeric vector") | ||
|
||
#6. Only include input cov.val if covariates are included in model | ||
expect_error(detectionCalculate(model2$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0)), | ||
paste0("cov.val must be NULL if the model does not ", | ||
"contain site-level covariates.")) | ||
|
||
#7. Input cov.val is the same length as the number of estimated covariates. | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0,0)), | ||
paste0("cov.val must be of the same length as the number of ", | ||
"non-intercept site-level coefficients in the model.")) | ||
|
||
#8. If covariates are in model, cov.val must be provided | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5)), | ||
paste0("cov.val must be provided if the model contains ", | ||
"site-level covariates.")) | ||
|
||
#9. qPCR.N must be an integer | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0), qPCR.N = 6.8), | ||
"qPCR.N should be an integer.") | ||
}) | ||
|
||
|
||
|
||
|
||
test_that("detectionCalculate input checks work", { | ||
testthat::skip_on_cran() | ||
#' @srrstats {G5.2,G5.2b} Tests the assure function input checks are behaving | ||
#' as expected. | ||
# run joint model to do tests with | ||
model1 <- suppressWarnings({jointModel(data = gobyData, | ||
cov = c('Filter_time','Salinity'), | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
model2 <- suppressWarnings({jointModel(data = greencrabData,family = 'negbin', | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
#1. make sure model fit is of class stanfit | ||
expect_error(detectionCalculate(as.matrix(model1$model), mu = c(0.1, 0.5), | ||
cov.val = c(0,0)), | ||
"modelfit must be of class 'stanfit'.") | ||
|
||
#2. make sure ci is valid | ||
expect_error(detectionCalculate(model1$model, mu = c('0', 0.5), | ||
cov.val = c(0,0)), | ||
"mu must be a numeric vector of positive values") | ||
|
||
#3. make sure mu is a numeric vector of positive values | ||
expect_error(detectionCalculate(model1$model, mu = c(0, 0.5), | ||
cov.val = c(0,0)), | ||
"mu must be a numeric vector of positive values") | ||
|
||
#4. make sure probability is a numeric value between 0 and 1 | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0), probability = 1.05), | ||
"probability must be a numeric value between 0 and 1") | ||
|
||
#5. cov.val is numeric, if provided | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c('0',0)), | ||
"cov.val must be a numeric vector") | ||
|
||
#6. Only include input cov.val if covariates are included in model | ||
expect_error(detectionCalculate(model2$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0)), | ||
paste0("cov.val must be NULL if the model does not ", | ||
"contain site-level covariates.")) | ||
|
||
#7. Input cov.val is the same length as the number of estimated covariates. | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0,0)), | ||
paste0("cov.val must be of the same length as the number of ", | ||
"non-intercept site-level coefficients in the model.")) | ||
|
||
#8. If covariates are in model, cov.val must be provided | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5)), | ||
paste0("cov.val must be provided if the model contains ", | ||
"site-level covariates.")) | ||
|
||
#9. qPCR.N must be an integer | ||
expect_error(detectionCalculate(model1$model, mu = c(0.1, 0.5), | ||
cov.val = c(0,0), qPCR.N = 6.8), | ||
"qPCR.N should be an integer.") | ||
}) | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,74 +1,75 @@ | ||
test_that("detectionPlot input checks work", { | ||
#' @srrstats {G5.2,G5.2b} Tests the assure function input checks are behaving | ||
#' as expected. | ||
# run joint model to do tests with | ||
model1 <- suppressWarnings({jointModel(data = gobyData, | ||
cov = c('Filter_time','Salinity'), | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75, | ||
multicore = FALSE)}) | ||
|
||
model2 <- suppressWarnings({jointModel(data = greencrabData, | ||
family = 'negbin', | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
#1. make sure model fit is of class stanfit | ||
expect_error(detectionPlot(as.matrix(model1$model), mu.min = 0.1, | ||
mu.max = 1, cov.val = c(0,0)), | ||
"modelfit must be of class 'stanfit'.") | ||
|
||
#2. make sure mu.min is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = '0.1', mu.max = 1, | ||
cov.val = c(0,0)), | ||
"mu.min must be a numeric value greater than 0") | ||
|
||
#3. make sure mu.min is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0, mu.max = 1, | ||
cov.val = c(0,0)), | ||
"mu.min must be a numeric value greater than 0") | ||
|
||
#4. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = '1', | ||
cov.val = c(0,0)), | ||
"mu.max must be a numeric value greater than mu.min") | ||
|
||
#5. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 0.1, | ||
cov.val = c(0,0)), | ||
"mu.max must be a numeric value greater than mu.min") | ||
|
||
#6. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0), probability = 1.1), | ||
"probability must be a numeric value between 0 and 1") | ||
|
||
#7. cov.val is numeric, if provided | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,'0')), | ||
"cov.val must be a numeric vector") | ||
|
||
#8. Only include input cov.val if covariates are included in model | ||
expect_error(detectionPlot(model2$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0)), | ||
paste0("cov.val must be NULL if the model does not contain ", | ||
"site-level covariates.")) | ||
|
||
#9. Input cov.val is the same length as the number of estimated covariates. | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0,0)), | ||
paste0("cov.val must be of the same length as the number of ", | ||
"non-intercept site-level coefficients in the model.")) | ||
|
||
#10. If covariates are in model, cov.val must be provided | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1), | ||
paste0("cov.val must be provided if the model contains ", | ||
"site-level covariates.")) | ||
|
||
#11. qPCR.N must be an integer | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0), qPCR.N = 6.8), | ||
"qPCR.N should be an integer.") | ||
}) | ||
|
||
|
||
test_that("detectionPlot input checks work", { | ||
testthat::skip_on_cran() | ||
#' @srrstats {G5.2,G5.2b} Tests the assure function input checks are behaving | ||
#' as expected. | ||
# run joint model to do tests with | ||
model1 <- suppressWarnings({jointModel(data = gobyData, | ||
cov = c('Filter_time','Salinity'), | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75, | ||
multicore = FALSE)}) | ||
|
||
model2 <- suppressWarnings({jointModel(data = greencrabData, | ||
family = 'negbin', | ||
n.chain = 1,n.iter.burn = 25, | ||
n.iter.sample = 75,multicore = FALSE)}) | ||
|
||
#1. make sure model fit is of class stanfit | ||
expect_error(detectionPlot(as.matrix(model1$model), mu.min = 0.1, | ||
mu.max = 1, cov.val = c(0,0)), | ||
"modelfit must be of class 'stanfit'.") | ||
|
||
#2. make sure mu.min is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = '0.1', mu.max = 1, | ||
cov.val = c(0,0)), | ||
"mu.min must be a numeric value greater than 0") | ||
|
||
#3. make sure mu.min is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0, mu.max = 1, | ||
cov.val = c(0,0)), | ||
"mu.min must be a numeric value greater than 0") | ||
|
||
#4. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = '1', | ||
cov.val = c(0,0)), | ||
"mu.max must be a numeric value greater than mu.min") | ||
|
||
#5. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 0.1, | ||
cov.val = c(0,0)), | ||
"mu.max must be a numeric value greater than mu.min") | ||
|
||
#6. make sure mu.max is a numeric value | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0), probability = 1.1), | ||
"probability must be a numeric value between 0 and 1") | ||
|
||
#7. cov.val is numeric, if provided | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,'0')), | ||
"cov.val must be a numeric vector") | ||
|
||
#8. Only include input cov.val if covariates are included in model | ||
expect_error(detectionPlot(model2$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0)), | ||
paste0("cov.val must be NULL if the model does not contain ", | ||
"site-level covariates.")) | ||
|
||
#9. Input cov.val is the same length as the number of estimated covariates. | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0,0)), | ||
paste0("cov.val must be of the same length as the number of ", | ||
"non-intercept site-level coefficients in the model.")) | ||
|
||
#10. If covariates are in model, cov.val must be provided | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1), | ||
paste0("cov.val must be provided if the model contains ", | ||
"site-level covariates.")) | ||
|
||
#11. qPCR.N must be an integer | ||
expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, | ||
cov.val = c(0,0), qPCR.N = 6.8), | ||
"qPCR.N should be an integer.") | ||
}) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.