forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into bug_issue16770
- Loading branch information
Showing
123 changed files
with
1,487 additions
and
2,553 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
- [ ] closes #xxxx | ||
- [ ] tests added / passed | ||
- [ ] passes ``git diff upstream/master --name-only -- '*.py' | flake8 --diff`` (On Windows, ``git diff upstream/master -u -- "*.py" | flake8 --diff`` might work as an alternative.) | ||
- [ ] passes ``git diff upstream/master -u -- "*.py" | flake8 --diff`` | ||
- [ ] whatsnew entry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# File : .pep8speaks.yml | ||
|
||
scanner: | ||
diff_only: True # If True, errors caused by only the patch are shown | ||
|
||
pycodestyle: | ||
max-line-length: 79 | ||
ignore: # Errors and warnings to ignore | ||
- E731 | ||
- E402 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
from .pandas_vb_common import * | ||
import pandas as pd | ||
import numpy as np | ||
|
||
|
||
class DataframeRolling(object): | ||
goal_time = 0.2 | ||
|
||
def setup(self): | ||
self.N = 100000 | ||
self.Ns = 10000 | ||
self.df = pd.DataFrame({'a': np.random.random(self.N)}) | ||
self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) | ||
self.wins = 10 | ||
self.winl = 1000 | ||
|
||
def time_rolling_quantile_0(self): | ||
(self.df.rolling(self.wins).quantile(0.0)) | ||
|
||
def time_rolling_quantile_1(self): | ||
(self.df.rolling(self.wins).quantile(1.0)) | ||
|
||
def time_rolling_quantile_median(self): | ||
(self.df.rolling(self.wins).quantile(0.5)) | ||
|
||
def time_rolling_median(self): | ||
(self.df.rolling(self.wins).median()) | ||
|
||
def time_rolling_mean(self): | ||
(self.df.rolling(self.wins).mean()) | ||
|
||
def time_rolling_max(self): | ||
(self.df.rolling(self.wins).max()) | ||
|
||
def time_rolling_min(self): | ||
(self.df.rolling(self.wins).min()) | ||
|
||
def time_rolling_std(self): | ||
(self.df.rolling(self.wins).std()) | ||
|
||
def time_rolling_count(self): | ||
(self.df.rolling(self.wins).count()) | ||
|
||
def time_rolling_skew(self): | ||
(self.df.rolling(self.wins).skew()) | ||
|
||
def time_rolling_kurt(self): | ||
(self.df.rolling(self.wins).kurt()) | ||
|
||
def time_rolling_sum(self): | ||
(self.df.rolling(self.wins).sum()) | ||
|
||
def time_rolling_corr(self): | ||
(self.dfs.rolling(self.wins).corr()) | ||
|
||
def time_rolling_cov(self): | ||
(self.dfs.rolling(self.wins).cov()) | ||
|
||
def time_rolling_quantile_0_l(self): | ||
(self.df.rolling(self.winl).quantile(0.0)) | ||
|
||
def time_rolling_quantile_1_l(self): | ||
(self.df.rolling(self.winl).quantile(1.0)) | ||
|
||
def time_rolling_quantile_median_l(self): | ||
(self.df.rolling(self.winl).quantile(0.5)) | ||
|
||
def time_rolling_median_l(self): | ||
(self.df.rolling(self.winl).median()) | ||
|
||
def time_rolling_mean_l(self): | ||
(self.df.rolling(self.winl).mean()) | ||
|
||
def time_rolling_max_l(self): | ||
(self.df.rolling(self.winl).max()) | ||
|
||
def time_rolling_min_l(self): | ||
(self.df.rolling(self.winl).min()) | ||
|
||
def time_rolling_std_l(self): | ||
(self.df.rolling(self.wins).std()) | ||
|
||
def time_rolling_count_l(self): | ||
(self.df.rolling(self.wins).count()) | ||
|
||
def time_rolling_skew_l(self): | ||
(self.df.rolling(self.wins).skew()) | ||
|
||
def time_rolling_kurt_l(self): | ||
(self.df.rolling(self.wins).kurt()) | ||
|
||
def time_rolling_sum_l(self): | ||
(self.df.rolling(self.wins).sum()) | ||
|
||
|
||
class SeriesRolling(object): | ||
goal_time = 0.2 | ||
|
||
def setup(self): | ||
self.N = 100000 | ||
self.Ns = 10000 | ||
self.df = pd.DataFrame({'a': np.random.random(self.N)}) | ||
self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) | ||
self.sr = self.df.a | ||
self.srs = self.dfs.a | ||
self.wins = 10 | ||
self.winl = 1000 | ||
|
||
def time_rolling_quantile_0(self): | ||
(self.sr.rolling(self.wins).quantile(0.0)) | ||
|
||
def time_rolling_quantile_1(self): | ||
(self.sr.rolling(self.wins).quantile(1.0)) | ||
|
||
def time_rolling_quantile_median(self): | ||
(self.sr.rolling(self.wins).quantile(0.5)) | ||
|
||
def time_rolling_median(self): | ||
(self.sr.rolling(self.wins).median()) | ||
|
||
def time_rolling_mean(self): | ||
(self.sr.rolling(self.wins).mean()) | ||
|
||
def time_rolling_max(self): | ||
(self.sr.rolling(self.wins).max()) | ||
|
||
def time_rolling_min(self): | ||
(self.sr.rolling(self.wins).min()) | ||
|
||
def time_rolling_std(self): | ||
(self.sr.rolling(self.wins).std()) | ||
|
||
def time_rolling_count(self): | ||
(self.sr.rolling(self.wins).count()) | ||
|
||
def time_rolling_skew(self): | ||
(self.sr.rolling(self.wins).skew()) | ||
|
||
def time_rolling_kurt(self): | ||
(self.sr.rolling(self.wins).kurt()) | ||
|
||
def time_rolling_sum(self): | ||
(self.sr.rolling(self.wins).sum()) | ||
|
||
def time_rolling_corr(self): | ||
(self.srs.rolling(self.wins).corr()) | ||
|
||
def time_rolling_cov(self): | ||
(self.srs.rolling(self.wins).cov()) | ||
|
||
def time_rolling_quantile_0_l(self): | ||
(self.sr.rolling(self.winl).quantile(0.0)) | ||
|
||
def time_rolling_quantile_1_l(self): | ||
(self.sr.rolling(self.winl).quantile(1.0)) | ||
|
||
def time_rolling_quantile_median_l(self): | ||
(self.sr.rolling(self.winl).quantile(0.5)) | ||
|
||
def time_rolling_median_l(self): | ||
(self.sr.rolling(self.winl).median()) | ||
|
||
def time_rolling_mean_l(self): | ||
(self.sr.rolling(self.winl).mean()) | ||
|
||
def time_rolling_max_l(self): | ||
(self.sr.rolling(self.winl).max()) | ||
|
||
def time_rolling_min_l(self): | ||
(self.sr.rolling(self.winl).min()) | ||
|
||
def time_rolling_std_l(self): | ||
(self.sr.rolling(self.wins).std()) | ||
|
||
def time_rolling_count_l(self): | ||
(self.sr.rolling(self.wins).count()) | ||
|
||
def time_rolling_skew_l(self): | ||
(self.sr.rolling(self.wins).skew()) | ||
|
||
def time_rolling_kurt_l(self): | ||
(self.sr.rolling(self.wins).kurt()) | ||
|
||
def time_rolling_sum_l(self): | ||
(self.sr.rolling(self.wins).sum()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.