-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
326 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
# Fine-Tune Llama 3 with LoRA on AWS EC2 | ||
|
||
This example demonstrates how to fine-tune a Llama 3 8B model using | ||
[LoRA](https://huggingface.co/docs/peft/main/en/conceptual_guides/lora) on AWS EC2 using Runhouse. | ||
|
||
Make sure to sign the waiver on the [Hugging Face model page](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | ||
so that you can access it. | ||
|
||
## Setup credentials and dependencies | ||
|
||
Install the few required dependencies: | ||
```shell | ||
$ pip install -r requirements.txt | ||
``` | ||
|
||
We'll be launching an AWS EC2 instance via [SkyPilot](https://github.com/skypilot-org/skypilot), so we need to | ||
make sure our AWS credentials are set up: | ||
```shell | ||
$ aws configure | ||
$ sky check | ||
``` | ||
|
||
After that, you can just run the example: | ||
```shell | ||
$ python llama3_fine_tuning.py | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
# # Fine-Tune Llama 3 with LoRA on AWS EC2 | ||
|
||
# This example demonstrates fine-tune a Meta Llama 3 model with | ||
# [LoRA](https://huggingface.co/docs/peft/main/en/conceptual_guides/lora) on AWS EC2 using Runhouse. | ||
# | ||
# Make sure to sign the waiver on the [Hugging Face model](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | ||
# page so that you can access it. | ||
# | ||
# ## Set up credentials and dependencies | ||
# | ||
# Install the required dependencies: | ||
# ```shell | ||
# $ pip install "runhouse[aws]" | ||
# ``` | ||
# | ||
# We'll be launching an AWS EC2 instance via [SkyPilot](https://github.com/skypilot-org/skypilot), so we need to | ||
# make sure our AWS credentials are set up: | ||
# ```shell | ||
# $ aws configure | ||
# $ sky check | ||
# ``` | ||
# To download the Llama 3 model on our EC2 instance, we need to set up a | ||
# Hugging Face [token](https://huggingface.co/docs/hub/en/security-tokens): | ||
# ```shell | ||
# $ export HF_TOKEN=<your huggingface token> | ||
# ``` | ||
# | ||
# ## Create a model class | ||
# | ||
# We import runhouse, the only required library we need locally: | ||
import runhouse as rh | ||
|
||
# Next, we define a class that will hold the various methods needed to fine-tune the model. | ||
# You'll notice this class inherits from `rh.Module`. This is a Runhouse class that allows you to | ||
# run code in your class on a remote machine. | ||
# | ||
# Learn more in the [Runhouse docs on functions and modules](/docs/tutorials/api-modules). | ||
|
||
DEFAULT_MAX_LENGTH = 200 | ||
|
||
|
||
class FineTuner(rh.Module): | ||
def __init__( | ||
self, | ||
dataset_name="Shekswess/medical_llama3_instruct_dataset_short", | ||
base_model_name="meta-llama/Meta-Llama-3-8B-Instruct", | ||
fine_tuned_model_name="llama-3-8b-medical", | ||
): | ||
super().__init__() | ||
self.dataset_name = dataset_name | ||
self.base_model_name = base_model_name | ||
self.fine_tuned_model_name = fine_tuned_model_name | ||
|
||
self.tokenizer = None | ||
self.base_model = None | ||
self.fine_tuned_model = None | ||
self.pipeline = None | ||
|
||
def load_base_model(self): | ||
import torch | ||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig | ||
|
||
# configure the model for efficient training | ||
quant_config = BitsAndBytesConfig( | ||
load_in_4bit=True, | ||
bnb_4bit_quant_type="nf4", | ||
bnb_4bit_compute_dtype=torch.float16, | ||
bnb_4bit_use_double_quant=False, | ||
) | ||
|
||
# load the base model with the quantization configuration | ||
self.base_model = AutoModelForCausalLM.from_pretrained( | ||
self.base_model_name, quantization_config=quant_config, device_map={"": 0} | ||
) | ||
|
||
self.base_model.config.use_cache = False | ||
self.base_model.config.pretraining_tp = 1 | ||
|
||
def load_tokenizer(self): | ||
from transformers import AutoTokenizer | ||
|
||
self.tokenizer = AutoTokenizer.from_pretrained( | ||
self.base_model_name, trust_remote_code=True | ||
) | ||
self.tokenizer.pad_token = self.tokenizer.eos_token | ||
self.tokenizer.padding_side = "right" | ||
|
||
def load_pipeline(self, max_length: int): | ||
from transformers import pipeline | ||
|
||
# Use the new fine-tuned model for generating text | ||
self.pipeline = pipeline( | ||
task="text-generation", | ||
model=self.fine_tuned_model, | ||
tokenizer=self.tokenizer, | ||
max_length=max_length, | ||
) | ||
|
||
def load_dataset(self): | ||
from datasets import load_dataset | ||
|
||
return load_dataset(self.dataset_name, split="train") | ||
|
||
def load_fine_tuned_model(self): | ||
import torch | ||
from peft import AutoPeftModelForCausalLM | ||
|
||
if not self.new_model_exists(): | ||
raise FileNotFoundError( | ||
"No fine tuned model found on the cluster. " | ||
"Call the `tune` method to run the fine tuning." | ||
) | ||
|
||
self.fine_tuned_model = AutoPeftModelForCausalLM.from_pretrained( | ||
self.fine_tuned_model_name, | ||
device_map={"": "cuda:0"}, # Loads model into GPU memory | ||
torch_dtype=torch.bfloat16, | ||
) | ||
|
||
self.fine_tuned_model = self.fine_tuned_model.merge_and_unload() | ||
|
||
def new_model_exists(self): | ||
from pathlib import Path | ||
|
||
return Path(f"~/{self.fine_tuned_model_name}").expanduser().exists() | ||
|
||
def training_params(self): | ||
from transformers import TrainingArguments | ||
|
||
return TrainingArguments( | ||
output_dir="./results_modified", | ||
num_train_epochs=1, | ||
per_device_train_batch_size=4, | ||
gradient_accumulation_steps=1, | ||
optim="paged_adamw_32bit", | ||
save_steps=25, | ||
logging_steps=25, | ||
learning_rate=2e-4, | ||
weight_decay=0.001, | ||
fp16=False, | ||
bf16=False, | ||
max_grad_norm=0.3, | ||
max_steps=-1, | ||
warmup_ratio=0.03, | ||
group_by_length=True, | ||
lr_scheduler_type="constant", | ||
report_to="tensorboard", | ||
) | ||
|
||
def sft_trainer(self, training_data, peft_parameters, train_params): | ||
from trl import SFTTrainer | ||
|
||
# Set up the SFTTrainer with the model, training data, and parameters to learn from the new dataset | ||
return SFTTrainer( | ||
model=self.base_model, | ||
train_dataset=training_data, | ||
peft_config=peft_parameters, | ||
dataset_text_field="prompt", # Dependent on your dataset | ||
tokenizer=self.tokenizer, | ||
args=train_params, | ||
) | ||
|
||
def tune(self): | ||
import gc | ||
|
||
import torch | ||
from peft import LoraConfig | ||
|
||
if self.new_model_exists(): | ||
return | ||
|
||
# Load the training data, tokenizer and model to be used by the trainer | ||
training_data = self.load_dataset() | ||
|
||
if self.tokenizer is None: | ||
self.load_tokenizer() | ||
|
||
if self.base_model is None: | ||
self.load_base_model() | ||
|
||
# Use LoRA to update a small subset of the model's parameters | ||
peft_parameters = LoraConfig( | ||
lora_alpha=16, lora_dropout=0.1, r=8, bias="none", task_type="CAUSAL_LM" | ||
) | ||
|
||
train_params = self.training_params() | ||
trainer = self.sft_trainer(training_data, peft_parameters, train_params) | ||
|
||
# Force clean the pytorch cache | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
trainer.train() | ||
|
||
# Save the fine-tuned model's weights and tokenizer files on the cluster | ||
trainer.model.save_pretrained(self.fine_tuned_model_name) | ||
trainer.tokenizer.save_pretrained(self.fine_tuned_model_name) | ||
|
||
# Clear VRAM from training | ||
del trainer | ||
del train_params | ||
del training_data | ||
self.base_model = None | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
print("Saved model weights and tokenizer on the cluster.") | ||
|
||
def generate(self, query: str, max_length: int = DEFAULT_MAX_LENGTH): | ||
if self.fine_tuned_model is None: | ||
# Load the fine-tuned model saved on the cluster | ||
self.load_fine_tuned_model() | ||
|
||
if self.tokenizer is None: | ||
self.load_tokenizer() | ||
|
||
if self.pipeline is None or max_length != DEFAULT_MAX_LENGTH: | ||
self.load_pipeline(max_length) | ||
|
||
# Format should reflect the format in the dataset_text_field in SFTTrainer | ||
output = self.pipeline( | ||
f"<|start_header_id|>system<|end_header_id|> Answer the question truthfully, you are a medical professional.<|eot_id|><|start_header_id|>user<|end_header_id|> This is the question: {query}<|eot_id|><|start_header_id|>assistant<|end_header_id|>" | ||
) | ||
return output[0]["generated_text"] | ||
|
||
|
||
# ## Define Runhouse primitives | ||
# | ||
# Now, we define code that will run locally when we run this script, and set up | ||
# our Runhouse module on a remote cluster. First, we create a cluster with the desired instance type and provider. | ||
# Our `instance_type` here is defined as `A10G:1`, which is the accelerator type and count that we need. We could | ||
# alternatively specify a specific AWS instance type, such as `p3.2xlarge` or `g4dn.xlarge`. | ||
# | ||
# Learn more in the [Runhouse docs on clusters](/docs/tutorials/api-clusters). | ||
# | ||
# :::note{.info title="Note"} | ||
# Make sure that your code runs within a `if __name__ == "__main__":` block, as shown below. Otherwise, | ||
# the script code will run when Runhouse attempts to run code remotely. | ||
# ::: | ||
if __name__ == "__main__": | ||
cluster = rh.cluster( | ||
name="rh-a10x", | ||
instance_type="A10G:1", | ||
memory="32+", | ||
provider="aws", | ||
) | ||
|
||
# Next, we define the environment for our module. This includes the required dependencies that need | ||
# to be installed on the remote machine, as well as any secrets that need to be synced up from local to remote. | ||
# Passing `huggingface` to the `secrets` parameter will load the Hugging Face token we set up earlier. | ||
# | ||
# Learn more in the [Runhouse docs on envs](/docs/tutorials/api-envs). | ||
env = rh.env( | ||
name="ft_env", | ||
reqs=[ | ||
"torch", | ||
"tensorboard", | ||
"scipy", | ||
"peft==0.4.0", | ||
"bitsandbytes==0.40.2", | ||
"transformers==4.31.0", | ||
"trl==0.4.7", | ||
"accelerate", | ||
], | ||
secrets=["huggingface"], # Needed to download Llama 3 from Hugging Face | ||
) | ||
|
||
# Finally, we define our module and run it on the remote cluster. We construct it normally and then call | ||
# `get_or_to` to run it on the remote cluster. Using `get_or_to` allows us to load the exiting Module | ||
# by the name `ft_env` if it was already put on the cluster. If we want to update the module each | ||
# time we run this script, we can use `to` instead of `get_or_to`. | ||
# | ||
# Note that we also pass the `env` object to the `get_or_to` method, which will ensure that the environment is | ||
# set up on the remote machine before the module is run. | ||
fine_tuner_remote = FineTuner().get_or_to( | ||
cluster, env=env, name="llama3-medical-model" | ||
) | ||
|
||
# ## Fine-tune the model on the cluster | ||
# | ||
# We can call the `tune` method on the model class instance if it were running locally. | ||
# This will run the function on the remote cluster and return the response to our local machine automatically. | ||
# Further calls will also run on the remote machine, and maintain state that was updated between calls, like | ||
# `self.model`. | ||
# Once the model is fine-tuned, we save this new model on the cluster and use it to generate our text predictions. | ||
# | ||
# :::note{.info title="Note"} | ||
# For this example we are using a [small subset](https://huggingface.co/datasets/Shekswess/medical_llama3_instruct_dataset_short) | ||
# of 1000 samples that are already compatible with the model's prompt format. | ||
# ::: | ||
fine_tuner_remote.tune() | ||
|
||
# ## Generate Text | ||
# Now that we have fine-tuned our model, we can generate text by calling the `generate` method with our query: | ||
query = "What's the best treatment for sunburn?" | ||
generated_text = fine_tuner_remote.generate(query) | ||
print(generated_text) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
runhouse[aws] |