-
Notifications
You must be signed in to change notification settings - Fork 100
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[DO NOT MERGE] Apply Rust patches on release/8.x #1
Conversation
That's correct, the revert is no longer necessary. |
🎊 thanks @cuviper! For naming, how about:
(of course open to any other suggestions) |
@alexcrichton I'd go for always using the |
@nikic without any kind of pre-release signifier? I guess I'm OK with that if we're including the snapshot date, as opposed to our current opaque |
[... lldb patches ...]
No, upstream did not want new language plugins, and instead preferred us to fork. I'm not completely sure that the troublesome Python config patch is even needed, it might have only been for Linux. |
dc0a10a
to
6c099ba
Compare
Status: This branch is working well with my rust llvm-monorepo branch (compare). LLVM is scheduled to create the 8.x branch tomorrow, so I plan to rebase once more on that and then submit a rust PR. |
This is needed for `-C target-cpu=help` and `-C target-feature=help` in rustc
If this lines are present then we apparently get errors [1] when compiling in the current [2] dist-i686-linux container. Attempts to upgrade both gcc and binutils did not fix the error, so it appears that this may just be a bug in the super old glibc we're using on the dist-i686-linux container. We don't actually need this code anyway, so just work around these issues by removing references to the `*64` functions. This'll get things compiling locally and shouldn't be a regression in functionality. [1]: https://travis-ci.org/rust-lang/rust/jobs/257578199 [2]: https://github.com/rust-lang/rust/tree/eba9d7f08ce5c90549ee52337aca0010ad566f0d/src/ci/docker/dist-i686-linux
For whatever reason this is failing the i686-freebsd builder in the Rust repo as-of this red-hot moment. The build seems to work fine without it so let's just remove it for now and pray there's a better fix later. Although if you're reading this and know of a better fix, we'd love to remove this!
Apparently glibc is so old it doesn't have the _POSIX_ARG_MAX constant. This shouldn't affect anything we use anyway though. https://travis-ci.org/rust-lang/rust/jobs/399333071
Can't seem to figure out how to do this without this patch...
This adds Rust support to Mangled. I am not completely certain that this is needed (or alternatively that it does enough, maybe Mangled::GuessLanguage needs a Rust case). This should be checked before attempting to upstream.
This was needed for the Rust plugin
Add a TypeAndOrName constructor that was declared but not defined. This is used in the Rust plugin. See https://reviews.llvm.org/D44752
Introduce LLDB_PY_LIB_SUFFIX and use it in various places in the build. This lets the x.py-based build work properly without having to set LLVM_LIBDIR_SUFFIX. See https://bugs.llvm.org/show_bug.cgi?id=18957 for some discussion.
Sometimes the DWARF can omit information about a discriminant, for example when an Option shares a discriminant slot with an enum that it wraps. In this case, lldb could crash, because the discriminant was not found and because there was no default variant. No test case because this relies on a compiler bug that will soon be fixed. Fixes llvm#16
While rebasing to master, I missed a spot where an include file was moved. I believe my local build was picking up an installed copy of the header, causing it to succeed locally.
This adds "rust-enabled" to the --version output, so it's easier to tell if lldb has rust support.
This fixes a couple of problems noticed while debugging the rust compiler change to use DW_TAG_variant_part: * IterableDIEChildren returned one extra DIE, because it did not preserve the CU in end() * The entire block dealing with DW_TAG_variant_part was erroneously inside the DW_TAG_member case.
This gives numeric names to tuple fields, because lldb clients expect fields to have names, and because using plain numbers seemed most rust-like. Closes llvm#21
When the discriminant is removed from an enum's members, be sure to rename the fields of any tuple type. This fixes a bug introduced in yesterday's patch.
Prepend an underscore to field names when emitting a C structure, to ensure that tuple fields have valid names.
Remove the by-name cache from RustASTContext. This was not needed and could interact badly with the DWARF parser. Closes llvm#22
…callback The `TypeSystemMap::m_mutex` guards against concurrent modifications of members of `TypeSystemMap`. In particular, `m_map`. `TypeSystemMap::ForEach` iterates through the entire `m_map` calling a user-specified callback for each entry. This is all done while `m_mutex` is locked. However, there's nothing that guarantees that the callback itself won't call back into `TypeSystemMap` APIs on the same thread. This lead to double-locking `m_mutex`, which is undefined behaviour. We've seen this cause a deadlock in the swift plugin with following backtrace: ``` int main() { std::unique_ptr<int> up = std::make_unique<int>(5); volatile int val = *up; return val; } clang++ -std=c++2a -g -O1 main.cpp ./bin/lldb -o “br se -p return” -o run -o “v *up” -o “expr *up” -b ``` ``` frame rust-lang#4: std::lock_guard<std::mutex>::lock_guard frame rust-lang#5: lldb_private::TypeSystemMap::GetTypeSystemForLanguage <<<< Lock rust-lang#2 frame rust-lang#6: lldb_private::TypeSystemMap::GetTypeSystemForLanguage frame rust-lang#7: lldb_private::Target::GetScratchTypeSystemForLanguage ... frame rust-lang#26: lldb_private::SwiftASTContext::LoadLibraryUsingPaths frame rust-lang#27: lldb_private::SwiftASTContext::LoadModule frame rust-lang#30: swift::ModuleDecl::collectLinkLibraries frame rust-lang#31: lldb_private::SwiftASTContext::LoadModule frame rust-lang#34: lldb_private::SwiftASTContext::GetCompileUnitImportsImpl frame rust-lang#35: lldb_private::SwiftASTContext::PerformCompileUnitImports frame rust-lang#36: lldb_private::TypeSystemSwiftTypeRefForExpressions::GetSwiftASTContext frame rust-lang#37: lldb_private::TypeSystemSwiftTypeRefForExpressions::GetPersistentExpressionState frame rust-lang#38: lldb_private::Target::GetPersistentSymbol frame rust-lang#41: lldb_private::TypeSystemMap::ForEach <<<< Lock #1 frame rust-lang#42: lldb_private::Target::GetPersistentSymbol frame rust-lang#43: lldb_private::IRExecutionUnit::FindInUserDefinedSymbols frame rust-lang#44: lldb_private::IRExecutionUnit::FindSymbol frame rust-lang#45: lldb_private::IRExecutionUnit::MemoryManager::GetSymbolAddressAndPresence frame rust-lang#46: lldb_private::IRExecutionUnit::MemoryManager::findSymbol frame rust-lang#47: non-virtual thunk to lldb_private::IRExecutionUnit::MemoryManager::findSymbol frame rust-lang#48: llvm::LinkingSymbolResolver::findSymbol frame rust-lang#49: llvm::LegacyJITSymbolResolver::lookup frame rust-lang#50: llvm::RuntimeDyldImpl::resolveExternalSymbols frame rust-lang#51: llvm::RuntimeDyldImpl::resolveRelocations frame rust-lang#52: llvm::MCJIT::finalizeLoadedModules frame rust-lang#53: llvm::MCJIT::finalizeObject frame rust-lang#54: lldb_private::IRExecutionUnit::ReportAllocations frame rust-lang#55: lldb_private::IRExecutionUnit::GetRunnableInfo frame rust-lang#56: lldb_private::ClangExpressionParser::PrepareForExecution frame rust-lang#57: lldb_private::ClangUserExpression::TryParse frame rust-lang#58: lldb_private::ClangUserExpression::Parse ``` Our solution is to simply iterate over a local copy of `m_map`. **Testing** * Confirmed on manual reproducer (would reproduce 100% of the time before the patch) Differential Revision: https://reviews.llvm.org/D149949
…est unittest Need to finalize the DIBuilder to avoid leak sanitizer errors like this: Direct leak of 48 byte(s) in 1 object(s) allocated from: #0 0x55c99ea1761d in operator new(unsigned long) #1 0x55c9a518ae49 in operator new rust-lang#2 0x55c9a518ae49 in llvm::MDTuple::getImpl(...) rust-lang#3 0x55c9a4f1b1ec in getTemporary rust-lang#4 0x55c9a4f1b1ec in llvm::DIBuilder::createFunction(...)
The motivation for this change is a workload generated by the XLA compiler targeting nvidia GPUs. This kernel has a few hundred i8 loads and stores. Merging is critical for performance. The current LSV doesn't merge these well because it only considers instructions within a block of 64 loads+stores. This limit is necessary to contain the O(n^2) behavior of the pass. I'm hesitant to increase the limit, because this pass is already one of the slowest parts of compiling an XLA program. So we rewrite basically the whole thing to use a new algorithm. Before, we compared every load/store to every other to see if they're consecutive. The insight (from tra@) is that this is redundant. If we know the offset from PtrA to PtrB, then we don't need to compare PtrC to both of them in order to tell whether C may be adjacent to A or B. So that's what we do. When scanning a basic block, we maintain a list of chains, where we know the offset from every element in the chain to the first element in the chain. Each instruction gets compared only to the leaders of all the chains. In the worst case, this is still O(n^2), because all chains might be of length 1. To prevent compile time blowup, we only consider the 64 most recently used chains. Thus we do no more comparisons than before, but we have the potential to make much longer chains. This rewrite affects many tests. The changes to tests fall into two categories. 1. The old code had what appears to be a bug when deciding whether a misaligned vectorized load is fast. Suppose TTI reports that load <i32 x 4> align 4 has relative speed 1, and suppose that load i32 align 4 has relative speed 32. The intent of the code seems to be that we prefer the scalar load, because it's faster. But the old code would choose the vectorized load. accessIsMisaligned would set RelativeSpeed to 0 for the scalar load (and not even call into TTI to get the relative speed), because the scalar load is aligned. After this patch, we will prefer the scalar load if it's faster. 2. This patch changes the logic for how we vectorize. Usually this results in vectorizing more. Explanation of changes to tests: - AMDGPU/adjust-alloca-alignment.ll: #1 - AMDGPU/flat_atomic.ll: rust-lang#2, we vectorize more. - AMDGPU/int_sideeffect.ll: rust-lang#2, there are two possible locations for the call to @foo, and the pass is brittle to this. Before, we'd vectorize in case 1 and not case 2. Now we vectorize in case 2 and not case 1. So we just move the call. - AMDGPU/adjust-alloca-alignment.ll: rust-lang#2, we vectorize more - AMDGPU/insertion-point.ll: rust-lang#2 we vectorize more - AMDGPU/merge-stores-private.ll: #1 (undoes changes from git rev 86f9117, which appear to have hit the bug from #1) - AMDGPU/multiple_tails.ll: #1 - AMDGPU/vect-ptr-ptr-size-mismatch.ll: Fix alignment (I think related to #1 above). - AMDGPU CodeGen: I have difficulty commenting on these changes, but many of them look like rust-lang#2, we vectorize more. - NVPTX/4x2xhalf.ll: Fix alignment (I think related to #1 above). - NVPTX/vectorize_i8.ll: We don't generate <3 x i8> vectors on NVPTX because they're not legal (and eventually get split) - X86/correct-order.ll: rust-lang#2, we vectorize more, probably because of changes to the chain-splitting logic. - X86/subchain-interleaved.ll: rust-lang#2, we vectorize more - X86/vector-scalar.ll: rust-lang#2, we can now vectorize scalar float + <1 x float> - X86/vectorize-i8-nested-add-inseltpoison.ll: Deleted the nuw test because it was nonsensical. It was doing `add nuw %v0, -1`, but this is equivalent to `add nuw %v0, 0xffff'ffff`, which is equivalent to asserting that %v0 == 0. - X86/vectorize-i8-nested-add.ll: Same as nested-add-inseltpoison.ll Differential Revision: https://reviews.llvm.org/D149893
Use hlfir::loadTrivialScalars to dereference pointer, allocatables, and load numerical and logical scalars. This has a small fallout on tests: - load is done on the HLFIR entity (#0 of hlfir.declare) and not the FIR one (#1). This makes no difference at the FIR level (#1 and #0 only differs to account for assumed and explicit shape lower bounds). - loadTrivialScalars get rids of allocatable fir.box for monomoprhic scalars (it is not needed). This exposed a bug in lowering of MERGE with a polymorphic and a monomorphic argument: when the monomorphic is not a fir.box, the polymorphic fir.class should not be reboxed but its address should be read. Reviewed By: tblah Differential Revision: https://reviews.llvm.org/D153252
Allow specifying 'nomerge' attribute for function pointers, e.g. like in the following C code: extern void (*foo)(void) __attribute__((nomerge)); void bar(long i) { if (i) foo(); else foo(); } With the goal to attach 'nomerge' to both calls done through 'foo': @foo = external local_unnamed_addr global ptr, align 8 define dso_local void @bar(i64 noundef %i) local_unnamed_addr #0 { ; ... %0 = load ptr, ptr @foo, align 8, !tbaa !5 ; ... if.then: tail call void %0() #1 br label %if.end if.else: tail call void %0() #1 br label %if.end if.end: ret void } ; ... attributes #1 = { nomerge ... } Report a warning in case if 'nomerge' is specified for a variable that is not a function pointer, e.g.: t.c:2:22: warning: 'nomerge' attribute is ignored because 'j' is not a function pointer [-Wignored-attributes] 2 | int j __attribute__((nomerge)); | ^ The intended use-case is for BPF backend. BPF provides a sort of "standard library" functions that are called helpers. BPF also verifies usage of these helpers before program execution. Because of limitations of verification / runtime model it is important to keep calls to some of such helpers from merging. An example could be found by the link [1], there input C code: if (data_end - data > 1024) { bpf_for_each_map_elem(&map1, cb, &cb_data, 0); } else { bpf_for_each_map_elem(&map2, cb, &cb_data, 0); } Is converted to bytecode equivalent to: if (data_end - data > 1024) tmp = &map1; else tmp = &map2; bpf_for_each_map_elem(tmp, cb, &cb_data, 0); However, BPF verification/runtime requires to use the same map address for each particular `bpf_for_each_map_elem()` call. The 'nomerge' attribute is a perfect match for this situation, but unfortunately BPF helpers are declared as pointers to functions: static long (*bpf_for_each_map_elem)(void *map, ...) = (void *) 164; Hence, this commit, allowing to use 'nomerge' for function pointers. [1] https://lore.kernel.org/bpf/03bdf90f-f374-1e67-69d6-76dd9c8318a4@meta.com/ Differential Revision: https://reviews.llvm.org/D152986
Running this on Amazon Ubuntu the final backtrace is: ``` (lldb) thread backtrace * thread #1, name = 'a.out', stop reason = breakpoint 1.1 * frame #0: 0x0000aaaaaaaa07d0 a.out`func_c at main.c:10:3 frame #1: 0x0000aaaaaaaa07c4 a.out`func_b at main.c:14:3 frame rust-lang#2: 0x0000aaaaaaaa07b4 a.out`func_a at main.c:18:3 frame rust-lang#3: 0x0000aaaaaaaa07a4 a.out`main(argc=<unavailable>, argv=<unavailable>) at main.c:22:3 frame rust-lang#4: 0x0000fffff7b373fc libc.so.6`___lldb_unnamed_symbol2962 + 108 frame rust-lang#5: 0x0000fffff7b374cc libc.so.6`__libc_start_main + 152 frame rust-lang#6: 0x0000aaaaaaaa06b0 a.out`_start + 48 ``` This causes the test to fail because of the extra ___lldb_unnamed_symbol2962 frame (an inlined function?). To fix this, strictly check all the frames in main.c then for the rest just check we find __libc_start_main and _start in that order regardless of other frames in between. Reviewed By: omjavaid Differential Revision: https://reviews.llvm.org/D154204
The original MFS work D85368 shows good performance improvement with Instrumented FDO. However, AutoFDO or Flow-Sensitive AutoFDO (FSAFDO) does not show performance gain. This is mainly caused by a less accurate profile compared to the iFDO profile. For the past few months, we have been working to improve FSAFDO quality, like in D145171. Taking advantage of this improvement, MFS now shows performance improvements over FSAFDO profiles. That being said, 2 minor changes need to be made, 1) An FS-AutoFDO profile generation pass needs to be added right before MFS pass and an FSAFDO profile load pass is needed when FS-AutoFDO is enabled and the MFS flag is present. 2) MFS only applies to hot functions, because we believe (and experiment also shows) FS-AutoFDO is more accurate about functions that have plenty of samples than those with no or very few samples. With this improvement, we see a 1.2% performance improvement in clang benchmark, 0.9% QPS improvement in our internal search benchmark, and 3%-5% improvement in internal storage benchmark. This is #1 of the two patches that enables the improvement. Reviewed By: wenlei, snehasish, xur Differential Revision: https://reviews.llvm.org/D152399
…tput The crash happens in clang::driver::tools::SplitDebugName when Output is InputInfo::Nothing. It doesn't happen with standalone clang driver because output is created in Driver::BuildJobsForActionNoCache. Example backtrace: ``` * thread #1, name = 'clangd', stop reason = hit program assert * frame #0: 0x00007ffff5c4eacf libc.so.6`raise + 271 frame #1: 0x00007ffff5c21ea5 libc.so.6`abort + 295 frame rust-lang#2: 0x00007ffff5c21d79 libc.so.6`__assert_fail_base.cold.0 + 15 frame rust-lang#3: 0x00007ffff5c47426 libc.so.6`__assert_fail + 70 frame rust-lang#4: 0x000055555dc0923c clangd`clang::driver::InputInfo::getFilename(this=0x00007fffffff9398) const at InputInfo.h:84:5 frame rust-lang#5: 0x000055555dcd0d8d clangd`clang::driver::tools::SplitDebugName(JA=0x000055555f6c6a50, Args=0x000055555f6d0b80, Input=0x00007fffffff9678, Output=0x00007fffffff9398) at CommonArgs.cpp:1275:40 frame rust-lang#6: 0x000055555dc955a5 clangd`clang::driver::tools::Clang::ConstructJob(this=0x000055555f6c69d0, C=0x000055555f6c64a0, JA=0x000055555f6c6a50, Output=0x00007fffffff9398, Inputs=0x00007fffffff9668, Args=0x000055555f6d0b80, LinkingOutput=0x0000000000000000) const at Clang.cpp:5690:33 frame rust-lang#7: 0x000055555dbf6b54 clangd`clang::driver::Driver::BuildJobsForActionNoCache(this=0x00007fffffffb5e0, C=0x000055555f6c64a0, A=0x000055555f6c6a50, TC=0x000055555f6c4be0, BoundArch=(Data = 0x0000000000000000, Length = 0), AtTopLevel=true, MultipleArchs=false, LinkingOutput=0x0000000000000000, CachedResults=size=1, TargetDeviceOffloadKind=OFK_None) const at Driver.cpp:5618:10 frame rust-lang#8: 0x000055555dbf4ef0 clangd`clang::driver::Driver::BuildJobsForAction(this=0x00007fffffffb5e0, C=0x000055555f6c64a0, A=0x000055555f6c6a50, TC=0x000055555f6c4be0, BoundArch=(Data = 0x0000000000000000, Length = 0), AtTopLevel=true, MultipleArchs=false, LinkingOutput=0x0000000000000000, CachedResults=size=1, TargetDeviceOffloadKind=OFK_None) const at Driver.cpp:5306:26 frame rust-lang#9: 0x000055555dbeb590 clangd`clang::driver::Driver::BuildJobs(this=0x00007fffffffb5e0, C=0x000055555f6c64a0) const at Driver.cpp:4844:5 frame rust-lang#10: 0x000055555dbe6b0f clangd`clang::driver::Driver::BuildCompilation(this=0x00007fffffffb5e0, ArgList=ArrayRef<const char *> @ 0x00007fffffffb268) at Driver.cpp:1496:3 frame rust-lang#11: 0x000055555b0cc0d9 clangd`clang::createInvocation(ArgList=ArrayRef<const char *> @ 0x00007fffffffbb38, Opts=CreateInvocationOptions @ 0x00007fffffffbb90) at CreateInvocationFromCommandLine.cpp:53:52 frame rust-lang#12: 0x000055555b378e7b clangd`clang::clangd::buildCompilerInvocation(Inputs=0x00007fffffffca58, D=0x00007fffffffc158, CC1Args=size=0) at Compiler.cpp:116:44 frame rust-lang#13: 0x000055555895a6c8 clangd`clang::clangd::(anonymous namespace)::Checker::buildInvocation(this=0x00007fffffffc760, TFS=0x00007fffffffe570, Contents= Has Value=false ) at Check.cpp:212:9 frame rust-lang#14: 0x0000555558959cec clangd`clang::clangd::check(File=(Data = "build/test.cpp", Length = 64), TFS=0x00007fffffffe570, Opts=0x00007fffffffe600) at Check.cpp:486:34 frame rust-lang#15: 0x000055555892164a clangd`main(argc=4, argv=0x00007fffffffecd8) at ClangdMain.cpp:993:12 frame rust-lang#16: 0x00007ffff5c3ad85 libc.so.6`__libc_start_main + 229 frame rust-lang#17: 0x00005555585bbe9e clangd`_start + 46 ``` Test Plan: ninja ClangDriverTests && tools/clang/unittests/Driver/ClangDriverTests Differential Revision: https://reviews.llvm.org/D154602
BlockDecl should be invalidated because of its invalid ParmVarDecl. Fixes #1 of llvm#64005 Differential Revision: https://reviews.llvm.org/D155984
TSan reports the following data race: Write of size 4 at 0x000109e0b160 by thread T2 (mutexes: write M0, write M1): #0 NativeFile::Close() File.cpp:329 #1 ConnectionFileDescriptor::Disconnect(lldb_private::Status*) ConnectionFileDescriptorPosix.cpp:232 rust-lang#2 Communication::Disconnect(lldb_private::Status*) Communication.cpp:61 rust-lang#3 process_gdb_remote::ProcessGDBRemote::DidExit() ProcessGDBRemote.cpp:1164 rust-lang#4 Process::SetExitStatus(int, char const*) Process.cpp:1097 rust-lang#5 process_gdb_remote::ProcessGDBRemote::MonitorDebugserverProcess(...) ProcessGDBRemote.cpp:3387 Previous read of size 4 at 0x000109e0b160 by main thread (mutexes: write M2): #0 NativeFile::IsValid() const File.h:393 #1 ConnectionFileDescriptor::IsConnected() const ConnectionFileDescriptorPosix.cpp:121 rust-lang#2 Communication::IsConnected() const Communication.cpp:79 rust-lang#3 process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(...) GDBRemoteCommunication.cpp:256 rust-lang#4 process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(...l) GDBRemoteCommunication.cpp:244 rust-lang#5 process_gdb_remote::GDBRemoteClientBase::SendPacketAndWaitForResponseNoLock(llvm::StringRef, StringExtractorGDBRemote&) GDBRemoteClientBase.cpp:246 The problem is that in WaitForPacketNoLock's run loop, it checks that the connection is still connected. This races with the ConnectionFileDescriptor disconnecting. Most (but not all) access to the IOObject in ConnectionFileDescriptorPosix is already gated by the mutex. This patch just protects IsConnected in the same way. Differential revision: https://reviews.llvm.org/D157347
TSan reports the following race: Write of size 8 at 0x000107707ee8 by main thread: #0 lldb_private::ThreadedCommunication::StartReadThread(...) ThreadedCommunication.cpp:175 #1 lldb_private::Process::SetSTDIOFileDescriptor(...) Process.cpp:4533 rust-lang#2 lldb_private::Platform::DebugProcess(...) Platform.cpp:1121 rust-lang#3 lldb_private::PlatformDarwin::DebugProcess(...) PlatformDarwin.cpp:711 rust-lang#4 lldb_private::Target::Launch(...) Target.cpp:3235 rust-lang#5 CommandObjectProcessLaunch::DoExecute(...) CommandObjectProcess.cpp:256 rust-lang#6 lldb_private::CommandObjectParsed::Execute(...) CommandObject.cpp:751 rust-lang#7 lldb_private::CommandInterpreter::HandleCommand(...) CommandInterpreter.cpp:2054 Previous read of size 8 at 0x000107707ee8 by thread T5: #0 lldb_private::HostThread::IsJoinable(...) const HostThread.cpp:30 #1 lldb_private::ThreadedCommunication::StopReadThread(...) ThreadedCommunication.cpp:192 rust-lang#2 lldb_private::Process::ShouldBroadcastEvent(...) Process.cpp:3420 rust-lang#3 lldb_private::Process::HandlePrivateEvent(...) Process.cpp:3728 rust-lang#4 lldb_private::Process::RunPrivateStateThread(...) Process.cpp:3914 rust-lang#5 std::__1::__function::__func<lldb_private::Process::StartPrivateStateThread(...) function.h:356 rust-lang#6 lldb_private::HostNativeThreadBase::ThreadCreateTrampoline(...) HostNativeThreadBase.cpp:62 rust-lang#7 lldb_private::HostThreadMacOSX::ThreadCreateTrampoline(...) HostThreadMacOSX.mm:18 The problem is the lack of synchronization between starting and stopping the read thread. This patch fixes that by protecting those operations with a mutex. Differential revision: https://reviews.llvm.org/D157361
TSan reports the following data race: Write of size 4 at 0x000109e0b160 by thread T2 (...): #0 lldb_private::NativeFile::Close() File.cpp:329 #1 lldb_private::ConnectionFileDescriptor::Disconnect(...) ConnectionFileDescriptorPosix.cpp:232 rust-lang#2 lldb_private::Communication::Disconnect(...) Communication.cpp:61 rust-lang#3 lldb_private::process_gdb_remote::ProcessGDBRemote::DidExit() ProcessGDBRemote.cpp:1164 rust-lang#4 lldb_private::Process::SetExitStatus(...) Process.cpp:1097 rust-lang#5 lldb_private::process_gdb_remote::ProcessGDBRemote::MonitorDebugserverProcess(...) ProcessGDBRemote.cpp:3387 Previous read of size 4 at 0x000109e0b160 by main thread (...): #0 lldb_private::NativeFile::IsValid() const File.h:393 #1 lldb_private::ConnectionFileDescriptor::IsConnected() const ConnectionFileDescriptorPosix.cpp:121 rust-lang#2 lldb_private::Communication::IsConnected() const Communication.cpp:79 rust-lang#3 lldb_private::process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(...) GDBRemoteCommunication.cpp:256 rust-lang#4 lldb_private::process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(...) GDBRemoteCommunication.cpp:244 rust-lang#5 lldb_private::process_gdb_remote::GDBRemoteClientBase::SendPacketAndWaitForResponseNoLock(...) GDBRemoteClientBase.cpp:246 I originally tried fixing the problem at the ConnectionFileDescriptor level, but that operates on an IOObject which can have different thread safety guarantees depending on its implementation. For this particular issue, the problem is specific to NativeFile. NativeFile can hold a file descriptor and/or a file stream. Throughout its implementation, it checks if the descriptor or stream is valid and do some operation on it if it is. While that works in a single threaded environment, nothing prevents another thread from modifying the descriptor or stream between the IsValid check and when it's actually being used. This patch prevents such issues by returning a ValueGuard RAII object. As long as the object is in scope, the value is guaranteed by a lock. Differential revision: https://reviews.llvm.org/D157347
Thread sanitizer reports the following data race: ``` WARNING: ThreadSanitizer: data race (pid=43201) Write of size 4 at 0x00010520c474 by thread T1 (mutexes: write M0, write M1): #0 lldb_private::PipePosix::CloseWriteFileDescriptor() PipePosix.cpp:242 (liblldb.18.0.0git.dylib:arm64+0x414700) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) #1 lldb_private::PipePosix::Close() PipePosix.cpp:217 (liblldb.18.0.0git.dylib:arm64+0x4144e8) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#2 lldb_private::ConnectionFileDescriptor::Disconnect(lldb_private::Status*) ConnectionFileDescriptorPosix.cpp:239 (liblldb.18.0.0git.dylib:arm64+0x40a620) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#3 lldb_private::Communication::Disconnect(lldb_private::Status*) Communication.cpp:61 (liblldb.18.0.0git.dylib:arm64+0x2a9318) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#4 lldb_private::process_gdb_remote::ProcessGDBRemote::DidExit() ProcessGDBRemote.cpp:1167 (liblldb.18.0.0git.dylib:arm64+0x8ed984) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) Previous read of size 4 at 0x00010520c474 by main thread (mutexes: write M2, write M3): #0 lldb_private::PipePosix::CanWrite() const PipePosix.cpp:229 (liblldb.18.0.0git.dylib:arm64+0x4145e4) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) #1 lldb_private::ConnectionFileDescriptor::Disconnect(lldb_private::Status*) ConnectionFileDescriptorPosix.cpp:212 (liblldb.18.0.0git.dylib:arm64+0x40a4a8) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#2 lldb_private::Communication::Disconnect(lldb_private::Status*) Communication.cpp:61 (liblldb.18.0.0git.dylib:arm64+0x2a9318) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#3 lldb_private::process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(StringExtractorGDBRemote&, lldb_private::Timeout<std::__1::ratio<1l, 1000000l>>, bool) GDBRemoteCommunication.cpp:373 (liblldb.18.0.0git.dylib:arm64+0x8b9c48) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) rust-lang#4 lldb_private::process_gdb_remote::GDBRemoteCommunication::WaitForPacketNoLock(StringExtractorGDBRemote&, lldb_private::Timeout<std::__1::ratio<1l, 1000000l>>, bool) GDBRemoteCommunication.cpp:243 (liblldb.18.0.0git.dylib:arm64+0x8b9904) (BuildId: 2983976beb2637b5943bff32fd12eb8932000000200000000100000000000e00) ``` Fix this by adding a mutex to PipePosix. Differential Revision: https://reviews.llvm.org/D157654
ThreadSanitizer reports the following issue: ``` Write of size 8 at 0x00010a70abb0 by thread T3 (mutexes: write M0): #0 lldb_private::ThreadList::Update(lldb_private::ThreadList&) ThreadList.cpp:741 (liblldb.18.0.0git.dylib:arm64+0x5dedf4) (BuildId: 9bced2aafa373580ae9d750d9cf79a8f32000000200000000100000000000e00) #1 lldb_private::Process::UpdateThreadListIfNeeded() Process.cpp:1212 (liblldb.18.0.0git.dylib:arm64+0x53bbec) (BuildId: 9bced2aafa373580ae9d750d9cf79a8f32000000200000000100000000000e00) Previous read of size 8 at 0x00010a70abb0 by main thread (mutexes: write M1): #0 lldb_private::ThreadList::GetMutex() const ThreadList.cpp:785 (liblldb.18.0.0git.dylib:arm64+0x5df138) (BuildId: 9bced2aafa373580ae9d750d9cf79a8f32000000200000000100000000000e00) #1 lldb_private::ThreadList::DidResume() ThreadList.cpp:656 (liblldb.18.0.0git.dylib:arm64+0x5de5c0) (BuildId: 9bced2aafa373580ae9d750d9cf79a8f32000000200000000100000000000e00) rust-lang#2 lldb_private::Process::PrivateResume() Process.cpp:3130 (liblldb.18.0.0git.dylib:arm64+0x53cd7c) (BuildId: 9bced2aafa373580ae9d750d9cf79a8f32000000200000000100000000000e00) ``` Fix this by only using the mutex in ThreadList and removing the one in process entirely. Differential Revision: https://reviews.llvm.org/D158034
Replace `BPFMIPeepholeTruncElim` by adding an overload for `TargetLowering::isZExtFree()` aware that zero extension is free for `ISD::LOAD`. Short description ================= The `BPFMIPeepholeTruncElim` handles two patterns: Pattern #1: %1 = LDB %0, ... %1 = LDB %0, ... %2 = AND_ri %1, 0xff -> %2 = MOV_ri %1 <-- (!) Pattern rust-lang#2: bb.1: bb.1: %a = LDB %0, ... %a = LDB %0, ... br %bb3 br %bb3 bb.2: bb.2: %b = LDB %0, ... -> %b = LDB %0, ... br %bb3 br %bb3 bb.3: bb.3: %1 = PHI %a, %b %1 = PHI %a, %b %2 = AND_ri %1, 0xff %2 = MOV_ri %1 <-- (!) Plus variations: - AND_ri_32 instead of AND_ri - SLL/SLR instead of AND_ri - LDH, LDW, LDB32, LDH32, LDW32 Both patterns could be handled by built-in transformations at instruction selection phase if suitable `isZExtFree()` implementation is provided. The idea is borrowed from `ARMTargetLowering::isZExtFree`. When evaluating on BPF kernel selftests and remove_truncate_*.ll LLVM test cases this revisions performs slightly better than BPFMIPeepholeTruncElim, see "Impact" section below for details. Commit also adds a few test cases to make sure that patterns in question are handled. Long description ================ Why this works: Pattern #1 -------------------------- Consider the following example: define i1 @foo(ptr %p) { entry: %a = load i8, ptr %p, align 1 %cond = icmp eq i8 %a, 0 ret i1 %cond } Log for `llc -mcpu=v2 -mtriple=bpfel -debug-only=isel` command: ... Type-legalized selection DAG: %bb.0 'foo:entry' SelectionDAG has 13 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %0 t16: i64,ch = load<(load (s8) from %ir.p), anyext from i8> t0, t2, undef:i64 t19: i64 = and t16, Constant:i64<255> t17: i64 = setcc t19, Constant:i64<0>, seteq:ch t11: ch,glue = CopyToReg t0, Register:i64 $r0, t17 t12: ch = BPFISD::RET_GLUE t11, Register:i64 $r0, t11:1 ... Replacing.1 t19: i64 = and t16, Constant:i64<255> With: t16: i64,ch = load<(load (s8) from %ir.p), anyext from i8> t0, t2, undef:i64 and 0 other values ... Optimized type-legalized selection DAG: %bb.0 'foo:entry' SelectionDAG has 11 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %0 t20: i64,ch = load<(load (s8) from %ir.p), zext from i8> t0, t2, undef:i64 t17: i64 = setcc t20, Constant:i64<0>, seteq:ch t11: ch,glue = CopyToReg t0, Register:i64 $r0, t17 t12: ch = BPFISD::RET_GLUE t11, Register:i64 $r0, t11:1 ... Note: - Optimized type-legalized selection DAG: - `t19 = and t16, 255` had been replaced by `t16` (load). - Patterns like `(and (load ... i8), 255)` are replaced by `load` in `DAGCombiner::BackwardsPropagateMask` called from `DAGCombiner::visitAND`. - Similarly patterns like `(shl (srl ..., 56), 56)` are replaced by `(and ..., 255)` in `DAGCombiner::visitSRL` (this function is huge, look for `TLI.shouldFoldConstantShiftPairToMask()` call). Why this works: Pattern rust-lang#2 -------------------------- Consider the following example: define i1 @foo(ptr %p) { entry: %a = load i8, ptr %p, align 1 br label %next next: %cond = icmp eq i8 %a, 0 ret i1 %cond } Consider log for `llc -mcpu=v2 -mtriple=bpfel -debug-only=isel` command. Log for first basic block: Initial selection DAG: %bb.0 'foo:entry' SelectionDAG has 9 nodes: t0: ch,glue = EntryToken t3: i64 = Constant<0> t2: i64,ch = CopyFromReg t0, Register:i64 %1 t5: i8,ch = load<(load (s8) from %ir.p)> t0, t2, undef:i64 t6: i64 = zero_extend t5 t8: ch = CopyToReg t0, Register:i64 %0, t6 ... Replacing.1 t6: i64 = zero_extend t5 With: t9: i64,ch = load<(load (s8) from %ir.p), zext from i8> t0, t2, undef:i64 and 0 other values ... Optimized lowered selection DAG: %bb.0 'foo:entry' SelectionDAG has 7 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %1 t9: i64,ch = load<(load (s8) from %ir.p), zext from i8> t0, t2, undef:i64 t8: ch = CopyToReg t0, Register:i64 %0, t9 Note: - Initial selection DAG: - `%a = load ...` is lowered as `t6 = (zero_extend (load ...))` w/o special `isZExtFree()` overload added by this commit it is instead lowered as `t6 = (any_extend (load ...))`. - The decision to generate `zero_extend` or `any_extend` is done in `RegsForValue::getCopyToRegs` called from `SelectionDAGBuilder::CopyValueToVirtualRegister`: - if `isZExtFree()` for load returns true `zero_extend` is used; - `any_extend` is used otherwise. - Optimized lowered selection DAG: - `t6 = (any_extend (load ...))` is replaced by `t9 = load ..., zext from i8` This is done by `DagCombiner.cpp:tryToFoldExtOfLoad()` called from `DAGCombiner::visitZERO_EXTEND`. Log for second basic block: Initial selection DAG: %bb.1 'foo:next' SelectionDAG has 13 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %0 t4: i64 = AssertZext t2, ValueType:ch:i8 t5: i8 = truncate t4 t8: i1 = setcc t5, Constant:i8<0>, seteq:ch t9: i64 = any_extend t8 t11: ch,glue = CopyToReg t0, Register:i64 $r0, t9 t12: ch = BPFISD::RET_GLUE t11, Register:i64 $r0, t11:1 ... Replacing.2 t18: i64 = and t4, Constant:i64<255> With: t4: i64 = AssertZext t2, ValueType:ch:i8 ... Type-legalized selection DAG: %bb.1 'foo:next' SelectionDAG has 13 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %0 t4: i64 = AssertZext t2, ValueType:ch:i8 t18: i64 = and t4, Constant:i64<255> t16: i64 = setcc t18, Constant:i64<0>, seteq:ch t11: ch,glue = CopyToReg t0, Register:i64 $r0, t16 t12: ch = BPFISD::RET_GLUE t11, Register:i64 $r0, t11:1 ... Optimized type-legalized selection DAG: %bb.1 'foo:next' SelectionDAG has 11 nodes: t0: ch,glue = EntryToken t2: i64,ch = CopyFromReg t0, Register:i64 %0 t4: i64 = AssertZext t2, ValueType:ch:i8 t16: i64 = setcc t4, Constant:i64<0>, seteq:ch t11: ch,glue = CopyToReg t0, Register:i64 $r0, t16 t12: ch = BPFISD::RET_GLUE t11, Register:i64 $r0, t11:1 ... Note: - Initial selection DAG: - `t0` is an input value for this basic block, it corresponds load instruction (`t9`) from the first basic block. - It is accessed within basic block via `t4` (AssertZext (CopyFromReg t0, ...)). - The `AssertZext` is generated by RegsForValue::getCopyFromRegs called from SelectionDAGBuilder::getCopyFromRegs, it is generated only when `LiveOutInfo` with known number of leading zeros is present for `t0`. - Known register bits in `LiveOutInfo` are computed by `SelectionDAG::computeKnownBits` called from `SelectionDAGISel::ComputeLiveOutVRegInfo`. - `computeKnownBits()` generates leading zeros information for `(load ..., zext from ...)` but *does not* generate leading zeros information for `(load ..., anyext from ...)`. This is why `isZExtFree()` added in this commit is important. - Type-legalized selection DAG: - `t5 = truncate t4` is replaced by `t18 = and t4, 255` - Optimized type-legalized selection DAG: - `t18 = and t4, 255` is replaced by `t4`, this is done by `DAGCombiner::SimplifyDemandedBits` called from `DAGCombiner::visitAND`, which simplifies patterns like `(and (assertzext ...))` Impact ------ This change covers all remove_truncate_*.ll test cases: - for -mcpu=v4 there are no changes in the generated code; - for -mcpu=v2 code generated for remove_truncate_7 and remove_truncate_8 improved slightly, for other tests it is unchanged. For remove_truncate_7: Before this revision After this revision -------------------- ------------------- r1 <<= 0x20 r1 <<= 0x20 r1 >>= 0x20 r1 >>= 0x20 if r1 == 0x0 goto +0x2 <LBB0_2> if r1 == 0x0 goto +0x2 <LBB0_2> r1 = *(u32 *)(r2 + 0x0) r0 = *(u32 *)(r2 + 0x0) goto +0x1 <LBB0_3> goto +0x1 <LBB0_3> <LBB0_2>: <LBB0_2>: r1 = *(u32 *)(r2 + 0x4) r0 = *(u32 *)(r2 + 0x4) <LBB0_3>: <LBB0_3>: r0 = r1 exit exit For remove_truncate_8: Before this revision After this revision -------------------- ------------------- r2 = *(u32 *)(r1 + 0x0) r2 = *(u32 *)(r1 + 0x0) r3 = r2 r3 = r2 r3 <<= 0x20 r3 <<= 0x20 r4 = r3 r3 s>>= 0x20 r4 s>>= 0x20 if r4 s> 0x2 goto +0x5 <LBB0_3> if r3 s> 0x2 goto +0x4 <LBB0_3> r4 = *(u32 *)(r1 + 0x4) r3 = *(u32 *)(r1 + 0x4) r3 >>= 0x20 if r3 >= r4 goto +0x2 <LBB0_3> if r2 >= r3 goto +0x2 <LBB0_3> r2 += 0x2 r2 += 0x2 *(u32 *)(r1 + 0x0) = r2 *(u32 *)(r1 + 0x0) = r2 <LBB0_3>: <LBB0_3>: r0 = 0x3 r0 = 0x3 exit exit For kernel BPF selftests statistics is as follows: (-mcpu=v4): - For -mcpu=v4: 9 out of 655 object files have differences, in all cases total number of instructions marginally decreased (-27 instructions). - For -mcpu=v2: 9 out of 655 object files have differences: - For 19 object files number of instruction decreased (-129 instruction in total): some redundant `rX &= 0xffff` and register to register assignments removed; - For 2 object files number of instructions increased +2 instructions in each file. Both -mcpu=v2 instruction increases could be reduced to the same example: define void @foo(ptr %p) { entry: %a = load i32, ptr %p, align 4 %b = sext i32 %a to i64 %c = icmp ult i64 1, %b br i1 %c, label %next, label %end next: call void inttoptr (i64 62 to ptr)(i32 %a) br label %end end: ret void } Note that this example uses value loaded to `%a` both as a sign extended (`%b`) and as zero extended (`%a` passed as parameter). Here is the difference in final assembly code: Before this revision After this revision -------------------- ------------------- r1 = *(u32 *)(r1 + 0) r1 = *(u32 *)(r1 + 0) r1 <<= 32 r1 <<= 32 r1 s>>= 32 r1 s>>= 32 if r1 < 2 goto <LBB0_2> if r1 < 2 goto <LBB0_2> r1 <<= 32 r1 >>= 32 call 62 call 62 <LBB0_2>: <LBB0_2>: exit exit Before this commit `%a` is passed to call as a sign extended value, after this commit `%a` is passed to call as a zero extended value, both are correct as 32-bit sub-register is the same. The difference comes from `DAGCombiner` operation on the initial DAG: Initial selection DAG before this commit: t5: i32,ch = load<(load (s32) from %ir.p)> t0, t2, undef:i64 t6: i64 = any_extend t5 <--------------------- (1) t8: ch = CopyToReg t0, Register:i64 %0, t6 t9: i64 = sign_extend t5 t12: i1 = setcc Constant:i64<1>, t9, setult:ch Initial selection DAG after this commit: t5: i32,ch = load<(load (s32) from %ir.p)> t0, t2, undef:i64 t6: i64 = zero_extend t5 <--------------------- (2) t8: ch = CopyToReg t0, Register:i64 %0, t6 t9: i64 = sign_extend t5 t12: i1 = setcc Constant:i64<1>, t9, setult:ch The node `t9` is processed before node `t6` and `load` instruction is combined to load with sign extension: Replacing.1 t9: i64 = sign_extend t5 With: t30: i64,ch = load<(load (s32) from %ir.p), sext from i32> t0, t2, undef:i64 and 0 other values Replacing.1 t5: i32,ch = load<(load (s32) from %ir.p)> t0, t2, undef:i64 With: t31: i32 = truncate t30 and 1 other values This is done by `DAGCombiner.cpp:tryToFoldExtOfLoad` called from `DAGCombiner::visitSIGN_EXTEND`. Note that `t5` is used by `t6` which is `any_extend` in (1) and `zero_extend` in (2). `tryToFoldExtOfLoad()` rewrites such uses of `t5` differently: - `any_extend` is simply removed - `zero_extend` is replaced by `and t30, 0xffffffff`, which is later converted to a pair of shifts. This pair of shifts survives till the end of translation. Differential Revision: https://reviews.llvm.org/D157870
This reverts commit 0e63f1a. clang-format started to crash with contents like: a.h: ``` ``` $ clang-format a.h ``` PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace. Stack dump: 0. Program arguments: ../llvm/build/bin/clang-format a.h #0 0x0000560b689fe177 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) /usr/local/google/home/kadircet/repos/llvm/llvm/lib/Support/Unix/Signals.inc:723:13 #1 0x0000560b689fbfbe llvm::sys::RunSignalHandlers() /usr/local/google/home/kadircet/repos/llvm/llvm/lib/Support/Signals.cpp:106:18 rust-lang#2 0x0000560b689feaca SignalHandler(int) /usr/local/google/home/kadircet/repos/llvm/llvm/lib/Support/Unix/Signals.inc:413:1 rust-lang#3 0x00007f030405a540 (/lib/x86_64-linux-gnu/libc.so.6+0x3c540) rust-lang#4 0x0000560b68a9a980 is /usr/local/google/home/kadircet/repos/llvm/clang/include/clang/Lex/Token.h:98:44 rust-lang#5 0x0000560b68a9a980 is /usr/local/google/home/kadircet/repos/llvm/clang/lib/Format/FormatToken.h:562:51 rust-lang#6 0x0000560b68a9a980 startsSequenceInternal<clang::tok::TokenKind, clang::tok::TokenKind> /usr/local/google/home/kadircet/repos/llvm/clang/lib/Format/FormatToken.h:831:9 rust-lang#7 0x0000560b68a9a980 startsSequence<clang::tok::TokenKind, clang::tok::TokenKind> /usr/local/google/home/kadircet/repos/llvm/clang/lib/Format/FormatToken.h:600:12 rust-lang#8 0x0000560b68a9a980 getFunctionName /usr/local/google/home/kadircet/repos/llvm/clang/lib/Format/TokenAnnotator.cpp:3131:17 rust-lang#9 0x0000560b68a9a980 clang::format::TokenAnnotator::annotate(clang::format::AnnotatedLine&) /usr/local/google/home/kadircet/repos/llvm/clang/lib/Format/TokenAnnotator.cpp:3191:17 Segmentation fault ```
…ttempting to dereferencing iterators. Runnign some tests with asan built of LLD would throw errors similar to the following: AddressSanitizer:DEADLYSIGNAL #0 0x55d8e6da5df7 in operator() /mnt/ssd/repo/lld/llvm-project/lld/MachO/Arch/ARM64.cpp:612 #1 0x55d8e6daa514 in operator() /mnt/ssd/repo/lld/llvm-project/lld/MachO/Arch/ARM64.cpp:650 Differential Revision: https://reviews.llvm.org/D157027
Summary: Thread sanitizer reports the following data race: ``` Write of size 8 at 0x000103303e70 by thread T1 (mutexes: write M0): #0 RNBRemote::CommDataReceived(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) RNBRemote.cpp:1075 (debugserver:arm64+0x100038db8) (BuildId: f130b34f693c4f3eba96139104af2b7132000000200000000100000000000e00) #1 RNBRemote::ThreadFunctionReadRemoteData(void*) RNBRemote.cpp:1180 (debugserver:arm64+0x1000391dc) (BuildId: f130b34f693c4f3eba96139104af2b7132000000200000000100000000000e00) Previous read of size 8 at 0x000103303e70 by main thread: #0 RNBRemote::GetPacketPayload(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>&) RNBRemote.cpp:797 (debugserver:arm64+0x100037c5c) (BuildId: f130b34f693c4f3eba96139104af2b7132000000200000000100000000000e00) #1 RNBRemote::GetPacket(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>&, RNBRemote::Packet&, bool) RNBRemote.cpp:907 (debugserver:arm64+0x1000378cc) (BuildId: f130b34f693c4f3eba96139104af2b7132000000200000000100000000000e00) ``` RNBRemote already has a mutex, extend its usage to protect the read of m_rx_packets. Reviewers: jdevlieghere, bulbazord, jingham Subscribers:
…fine.parallel verifier This patch updates AffineParallelOp::verify() to check each result type matches its corresponding reduction op (i.e, the result type must be a `FloatType` if the reduction attribute is `addf`) affine.parallel will crash on --lower-affine if the corresponding result type cannot match the reduction attribute. ``` %128 = affine.parallel (%arg2, %arg3) = (0, 0) to (8, 7) reduce ("maxf") -> (memref<8x7xf32>) { %alloc_33 = memref.alloc() : memref<8x7xf32> affine.yield %alloc_33 : memref<8x7xf32> } ``` This will crash and report a type conversion issue when we run `mlir-opt --lower-affine` ``` Assertion failed: (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"), function cast, file Casting.h, line 572. PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace. Stack dump: 0. Program arguments: mlir-opt --lower-affine temp.mlir #0 0x0000000102a18f18 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) (/workspacebin/mlir-opt+0x1002f8f18) #1 0x0000000102a171b4 llvm::sys::RunSignalHandlers() (/workspacebin/mlir-opt+0x1002f71b4) rust-lang#2 0x0000000102a195c4 SignalHandler(int) (/workspacebin/mlir-opt+0x1002f95c4) rust-lang#3 0x00000001be7894c4 (/usr/lib/system/libsystem_platform.dylib+0x1803414c4) rust-lang#4 0x00000001be771ee0 (/usr/lib/system/libsystem_pthread.dylib+0x180329ee0) rust-lang#5 0x00000001be6ac340 (/usr/lib/system/libsystem_c.dylib+0x180264340) rust-lang#6 0x00000001be6ab754 (/usr/lib/system/libsystem_c.dylib+0x180263754) rust-lang#7 0x0000000106864790 mlir::arith::getIdentityValueAttr(mlir::arith::AtomicRMWKind, mlir::Type, mlir::OpBuilder&, mlir::Location) (.cold.4) (/workspacebin/mlir-opt+0x104144790) rust-lang#8 0x0000000102ba66ac mlir::arith::getIdentityValueAttr(mlir::arith::AtomicRMWKind, mlir::Type, mlir::OpBuilder&, mlir::Location) (/workspacebin/mlir-opt+0x1004866ac) rust-lang#9 0x0000000102ba6910 mlir::arith::getIdentityValue(mlir::arith::AtomicRMWKind, mlir::Type, mlir::OpBuilder&, mlir::Location) (/workspacebin/mlir-opt+0x100486910) ... ``` Fixes llvm#64068 Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D157985
This reverts commit a1e81d2. Revert "Fix test hip-offload-compress-zlib.hip" This reverts commit ba01ce6. Revert due to sanity fail at https://lab.llvm.org/buildbot/#/builders/5/builds/37188 https://lab.llvm.org/buildbot/#/builders/238/builds/5955 /b/sanitizer-aarch64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Driver/OffloadBundler.cpp:1012:25: runtime error: load of misaligned address 0xaaaae2d90e7c for type 'const uint64_t' (aka 'const unsigned long'), which requires 8 byte alignment 0xaaaae2d90e7c: note: pointer points here bc 00 00 00 94 dc 29 9a 89 fb ca 2b 78 9c 8b 8f 77 f6 71 f4 73 8f f7 77 73 f3 f1 77 74 89 77 0a ^ #0 0xaaaaba125f70 in clang::CompressedOffloadBundle::decompress(llvm::MemoryBuffer const&, bool) /b/sanitizer-aarch64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Driver/OffloadBundler.cpp:1012:25 #1 0xaaaaba126150 in clang::OffloadBundler::ListBundleIDsInFile(llvm::StringRef, clang::OffloadBundlerConfig const&) /b/sanitizer-aarch64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Driver/OffloadBundler.cpp:1089:7 Will reland after fixing it.
TestCases/Misc/Linux/sigaction.cpp fails because dlsym() may call malloc on failure. And then the wrapped malloc appears to access thread local storage using global dynamic accesses, thus calling ___interceptor___tls_get_addr, before REAL(__tls_get_addr) has been set, so we get a crash inside ___interceptor___tls_get_addr. For example, this can happen when looking up __isoc23_scanf which might not exist in some libcs. Fix this by marking the thread local variable accessed inside the debug checks as "initial-exec", which does not require __tls_get_addr. This is probably a better alternative to llvm#83886. This fixes a different crash but is related to llvm#46204. Backtrace: ``` #0 0x0000000000000000 in ?? () rust-lang#1 0x00007ffff6a9d89e in ___interceptor___tls_get_addr (arg=0x7ffff6b27be8) at /path/to/llvm/compiler-rt/lib/tsan/rtl/tsan_interceptors_posix.cpp:2759 rust-lang#2 0x00007ffff6a46bc6 in __sanitizer::CheckedMutex::LockImpl (this=0x7ffff6b27be8, pc=140737331846066) at /path/to/llvm/compiler-rt/lib/sanitizer_common/sanitizer_mutex.cpp:218 rust-lang#3 0x00007ffff6a448b2 in __sanitizer::CheckedMutex::Lock (this=0x7ffff6b27be8, this@entry=0x730000000580) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_mutex.h:129 rust-lang#4 __sanitizer::Mutex::Lock (this=0x7ffff6b27be8, this@entry=0x730000000580) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_mutex.h:167 rust-lang#5 0x00007ffff6abdbb2 in __sanitizer::GenericScopedLock<__sanitizer::Mutex>::GenericScopedLock (mu=0x730000000580, this=<optimized out>) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_mutex.h:383 rust-lang#6 __sanitizer::SizeClassAllocator64<__tsan::AP64>::GetFromAllocator (this=0x7ffff7487dc0 <__tsan::allocator_placeholder>, stat=stat@entry=0x7ffff570db68, class_id=11, chunks=chunks@entry=0x7ffff5702cc8, n_chunks=n_chunks@entry=128) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_allocator_primary64.h:207 rust-lang#7 0x00007ffff6abdaa0 in __sanitizer::SizeClassAllocator64LocalCache<__sanitizer::SizeClassAllocator64<__tsan::AP64> >::Refill (this=<optimized out>, c=c@entry=0x7ffff5702cb8, allocator=<optimized out>, class_id=<optimized out>) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_allocator_local_cache.h:103 rust-lang#8 0x00007ffff6abd731 in __sanitizer::SizeClassAllocator64LocalCache<__sanitizer::SizeClassAllocator64<__tsan::AP64> >::Allocate (this=0x7ffff6b27be8, allocator=0x7ffff5702cc8, class_id=140737311157448) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_allocator_local_cache.h:39 rust-lang#9 0x00007ffff6abc397 in __sanitizer::CombinedAllocator<__sanitizer::SizeClassAllocator64<__tsan::AP64>, __sanitizer::LargeMmapAllocatorPtrArrayDynamic>::Allocate (this=0x7ffff5702cc8, cache=0x7ffff6b27be8, size=<optimized out>, size@entry=175, alignment=alignment@entry=16) at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_allocator_combined.h:69 rust-lang#10 0x00007ffff6abaa6a in __tsan::user_alloc_internal (thr=0x7ffff7ebd980, pc=140737331499943, sz=sz@entry=175, align=align@entry=16, signal=true) at /path/to/llvm/compiler-rt/lib/tsan/rtl/tsan_mman.cpp:198 rust-lang#11 0x00007ffff6abb0d1 in __tsan::user_alloc (thr=0x7ffff6b27be8, pc=140737331846066, sz=11, sz@entry=175) at /path/to/llvm/compiler-rt/lib/tsan/rtl/tsan_mman.cpp:223 rust-lang#12 0x00007ffff6a693b5 in ___interceptor_malloc (size=175) at /path/to/llvm/compiler-rt/lib/tsan/rtl/tsan_interceptors_posix.cpp:666 rust-lang#13 0x00007ffff7fce7f2 in malloc (size=175) at ../include/rtld-malloc.h:56 rust-lang#14 __GI__dl_exception_create_format (exception=exception@entry=0x7fffffffd0d0, objname=0x7ffff7fc3550 "/path/to/llvm/compiler-rt/cmake-build-all-sanitizers/lib/linux/libclang_rt.tsan-x86_64.so", fmt=fmt@entry=0x7ffff7ff2db9 "undefined symbol: %s%s%s") at ./elf/dl-exception.c:157 rust-lang#15 0x00007ffff7fd50e8 in _dl_lookup_symbol_x (undef_name=0x7ffff6af868b "__isoc23_scanf", undef_map=<optimized out>, ref=0x7fffffffd148, symbol_scope=<optimized out>, version=<optimized out>, type_class=0, flags=2, skip_map=0x7ffff7fc35e0) at ./elf/dl-lookup.c:793 --Type <RET> for more, q to quit, c to continue without paging-- rust-lang#16 0x00007ffff656d6ed in do_sym (handle=<optimized out>, name=0x7ffff6af868b "__isoc23_scanf", who=0x7ffff6a3bb84 <__interception::InterceptFunction(char const*, unsigned long*, unsigned long, unsigned long)+36>, vers=vers@entry=0x0, flags=flags@entry=2) at ./elf/dl-sym.c:146 rust-lang#17 0x00007ffff656d9dd in _dl_sym (handle=<optimized out>, name=<optimized out>, who=<optimized out>) at ./elf/dl-sym.c:195 rust-lang#18 0x00007ffff64a2854 in dlsym_doit (a=a@entry=0x7fffffffd3b0) at ./dlfcn/dlsym.c:40 rust-lang#19 0x00007ffff7fcc489 in __GI__dl_catch_exception (exception=exception@entry=0x7fffffffd310, operate=0x7ffff64a2840 <dlsym_doit>, args=0x7fffffffd3b0) at ./elf/dl-catch.c:237 rust-lang#20 0x00007ffff7fcc5af in _dl_catch_error (objname=0x7fffffffd368, errstring=0x7fffffffd370, mallocedp=0x7fffffffd367, operate=<optimized out>, args=<optimized out>) at ./elf/dl-catch.c:256 rust-lang#21 0x00007ffff64a2257 in _dlerror_run (operate=operate@entry=0x7ffff64a2840 <dlsym_doit>, args=args@entry=0x7fffffffd3b0) at ./dlfcn/dlerror.c:138 rust-lang#22 0x00007ffff64a28e5 in dlsym_implementation (dl_caller=<optimized out>, name=<optimized out>, handle=<optimized out>) at ./dlfcn/dlsym.c:54 rust-lang#23 ___dlsym (handle=<optimized out>, name=<optimized out>) at ./dlfcn/dlsym.c:68 rust-lang#24 0x00007ffff6a3bb84 in __interception::GetFuncAddr (name=0x7ffff6af868b "__isoc23_scanf", trampoline=140737311157448) at /path/to/llvm/compiler-rt/lib/interception/interception_linux.cpp:42 rust-lang#25 __interception::InterceptFunction (name=0x7ffff6af868b "__isoc23_scanf", ptr_to_real=0x7ffff74850e8 <__interception::real___isoc23_scanf>, func=11, trampoline=140737311157448) at /path/to/llvm/compiler-rt/lib/interception/interception_linux.cpp:61 rust-lang#26 0x00007ffff6a9f2d9 in InitializeCommonInterceptors () at /path/to/llvm/compiler-rt/lib/tsan/rtl/../../sanitizer_common/sanitizer_common_interceptors.inc:10315 ``` Reviewed By: vitalybuka, MaskRay Pull Request: llvm#83890
Modifies the privatization logic so that the emitted code only used the HLFIR base (i.e. SSA value `#0` returned from `hlfir.declare`). Before that, that emitted privatization logic was a mix of using `#0` and `rust-lang#1` which leads to some difficulties trying to move to delayed privatization (see the discussion on llvm#84033).
…p canonicalization (llvm#84225) The current canonicalization of `memref.dim` operating on the result of `memref.reshape` into `memref.load` is incorrect as it doesn't check whether the `index` operand of `memref.dim` dominates the source `memref.reshape` op. It always introduces `memref.load` right after `memref.reshape` to ensure the `memref` is not mutated before the `memref.load` call. As a result, the following error is observed: ``` $> mlir-opt --canonicalize input.mlir func.func @reshape_dim(%arg0: memref<*xf32>, %arg1: memref<?xindex>, %arg2: index) -> index { %c4 = arith.constant 4 : index %reshape = memref.reshape %arg0(%arg1) : (memref<*xf32>, memref<?xindex>) -> memref<*xf32> %0 = arith.muli %arg2, %c4 : index %dim = memref.dim %reshape, %0 : memref<*xf32> return %dim : index } ``` results in: ``` dominator.mlir:22:12: error: operand rust-lang#1 does not dominate this use %dim = memref.dim %reshape, %0 : memref<*xf32> ^ dominator.mlir:22:12: note: see current operation: %1 = "memref.load"(%arg1, %2) <{nontemporal = false}> : (memref<?xindex>, index) -> index dominator.mlir:21:10: note: operand defined here (op in the same block) %0 = arith.muli %arg2, %c4 : index ``` Properly fixing this issue requires a dominator analysis which is expensive to run within a canonicalization pattern. So, this patch fixes the canonicalization pattern by being more strict/conservative about the legality condition in which we perform this canonicalization. The more general pattern is also added to `tensor.dim`. Since tensors are immutable we don't need to worry about where to introduce the `tensor.extract` call after canonicalization.
…lvm#85653) This reverts commit daebe5c. This commit causes the following asan issue: ``` <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir | <snip>/llvm-project/build/bin/FileCheck <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # executed command: <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # .---command stderr------------ # | ================================================================= # | ==2772558==ERROR: AddressSanitizer: stack-use-after-return on address 0x7fd2c2c42b90 at pc 0x55e406d54614 bp 0x7ffc810e4070 sp 0x7ffc810e4068 # | READ of size 8 at 0x7fd2c2c42b90 thread T0 # | #0 0x55e406d54613 in operator()<long int const*> /usr/include/c++/13/bits/predefined_ops.h:318 # | rust-lang#1 0x55e406d54613 in __count_if<long int const*, __gnu_cxx::__ops::_Iter_pred<mlir::verifyListOfOperandsOrIntegers(Operation*, llvm::StringRef, unsigned int, llvm::ArrayRef<long int>, ValueRange)::<lambda(int64_t)> > > /usr/include/c++/13/bits/stl_algobase.h:2125 # | rust-lang#2 0x55e406d54613 in count_if<long int const*, mlir::verifyListOfOperandsOrIntegers(Operation*, ... ```
This patch adds a frame recognizer for Clang's `__builtin_verbose_trap`, which behaves like a `__builtin_trap`, but emits a failure-reason string into debug-info in order for debuggers to display it to a user. The frame recognizer triggers when we encounter a frame with a function name that begins with `__clang_trap_msg`, which is the magic prefix Clang emits into debug-info for verbose traps. Once such frame is encountered we display the frame function name as the `Stop Reason` and display that frame to the user. Example output: ``` (lldb) run warning: a.out was compiled with optimization - stepping may behave oddly; variables may not be available. Process 35942 launched: 'a.out' (arm64) Process 35942 stopped * thread rust-lang#1, queue = 'com.apple.main-thread', stop reason = Misc.: Function is not implemented frame rust-lang#1: 0x0000000100003fa4 a.out`main [inlined] Dummy::func(this=<unavailable>) at verbose_trap.cpp:3:5 [opt] 1 struct Dummy { 2 void func() { -> 3 __builtin_verbose_trap("Misc.", "Function is not implemented"); 4 } 5 }; 6 7 int main() { (lldb) bt * thread rust-lang#1, queue = 'com.apple.main-thread', stop reason = Misc.: Function is not implemented frame #0: 0x0000000100003fa4 a.out`main [inlined] __clang_trap_msg$Misc.$Function is not implemented$ at verbose_trap.cpp:0 [opt] * frame rust-lang#1: 0x0000000100003fa4 a.out`main [inlined] Dummy::func(this=<unavailable>) at verbose_trap.cpp:3:5 [opt] frame rust-lang#2: 0x0000000100003fa4 a.out`main at verbose_trap.cpp:8:13 [opt] frame rust-lang#3: 0x0000000189d518b4 dyld`start + 1988 ```
``` UBSan-Standalone-sparc :: TestCases/Misc/Linux/diag-stacktrace.cpp ``` `FAIL`s on 32 and 64-bit Linux/sparc64 (and on Solaris/sparcv9, too: the test isn't Linux-specific at all). With `UBSAN_OPTIONS=fast_unwind_on_fatal=1`, the stack trace shows a duplicate innermost frame: ``` compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:31: runtime error: execution reached the end of a value-returning function without returning a value #0 0x7003a708 in f() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:35 #1 0x7003a708 in f() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:35 #2 0x7003a714 in g() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:17:38 ``` which isn't seen with `fast_unwind_on_fatal=0`. This turns out to be another fallout from fixing `__builtin_return_address`/`__builtin_extract_return_addr` on SPARC. In `sanitizer_stacktrace_sparc.cpp` (`BufferedStackTrace::UnwindFast`) the `pc` arg is the return address, while `pc1` from the stack frame (`fr_savpc`) is the address of the `call` insn, leading to a double entry for the innermost frame in `trace_buffer[]`. This patch fixes this by moving the adjustment before all uses. Tested on `sparc64-unknown-linux-gnu` and `sparcv9-sun-solaris2.11` (with the `ubsan/TestCases/Misc/Linux` tests enabled). (cherry picked from commit 3368a32)
…linux (llvm#99613) Examples of the output: ARM: ``` # ./a.out AddressSanitizer:DEADLYSIGNAL ================================================================= ==122==ERROR: AddressSanitizer: SEGV on unknown address 0x0000007a (pc 0x76e13ac0 bp 0x7eb7fd00 sp 0x7eb7fcc8 T0) ==122==The signal is caused by a READ memory access. ==122==Hint: address points to the zero page. #0 0x76e13ac0 (/lib/libc.so.6+0x7cac0) rust-lang#1 0x76dce680 in gsignal (/lib/libc.so.6+0x37680) rust-lang#2 0x005c2250 (/root/a.out+0x145250) rust-lang#3 0x76db982c (/lib/libc.so.6+0x2282c) rust-lang#4 0x76db9918 in __libc_start_main (/lib/libc.so.6+0x22918) ==122==Register values: r0 = 0x00000000 r1 = 0x0000007a r2 = 0x0000000b r3 = 0x76d95020 r4 = 0x0000007a r5 = 0x00000001 r6 = 0x005dcc5c r7 = 0x0000010c r8 = 0x0000000b r9 = 0x76f9ece0 r10 = 0x00000000 r11 = 0x7eb7fd00 r12 = 0x76dce670 sp = 0x7eb7fcc8 lr = 0x76e13ab4 pc = 0x76e13ac0 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV (/lib/libc.so.6+0x7cac0) ==122==ABORTING ``` AArch64: ``` # ./a.out UndefinedBehaviorSanitizer:DEADLYSIGNAL ==99==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address 0x000000000063 (pc 0x007fbbbc5860 bp 0x007fcfdcb700 sp 0x007fcfdcb700 T99) ==99==The signal is caused by a UNKNOWN memory access. ==99==Hint: address points to the zero page. #0 0x007fbbbc5860 (/lib64/libc.so.6+0x82860) rust-lang#1 0x007fbbb81578 (/lib64/libc.so.6+0x3e578) rust-lang#2 0x00556051152c (/root/a.out+0x3152c) rust-lang#3 0x007fbbb6e268 (/lib64/libc.so.6+0x2b268) rust-lang#4 0x007fbbb6e344 (/lib64/libc.so.6+0x2b344) rust-lang#5 0x0055604e45ec (/root/a.out+0x45ec) ==99==Register values: x0 = 0x0000000000000000 x1 = 0x0000000000000063 x2 = 0x000000000000000b x3 = 0x0000007fbbb41440 x4 = 0x0000007fbbb41580 x5 = 0x3669288942d44cce x6 = 0x0000000000000000 x7 = 0x00000055605110b0 x8 = 0x0000000000000083 x9 = 0x0000000000000000 x10 = 0x0000000000000000 x11 = 0x0000000000000000 x12 = 0x0000007fbbdb3360 x13 = 0x0000000000010000 x14 = 0x0000000000000039 x15 = 0x00000000004113a0 x16 = 0x0000007fbbb81560 x17 = 0x0000005560540138 x18 = 0x000000006474e552 x19 = 0x0000000000000063 x20 = 0x0000000000000001 x21 = 0x000000000000000b x22 = 0x0000005560511510 x23 = 0x0000007fcfdcb918 x24 = 0x0000007fbbdb1b50 x25 = 0x0000000000000000 x26 = 0x0000007fbbdb2000 x27 = 0x000000556053f858 x28 = 0x0000000000000000 fp = 0x0000007fcfdcb700 lr = 0x0000007fbbbc584c sp = 0x0000007fcfdcb700 UndefinedBehaviorSanitizer can not provide additional info. SUMMARY: UndefinedBehaviorSanitizer: SEGV (/lib64/libc.so.6+0x82860) ==99==ABORTING ```
``` UBSan-Standalone-sparc :: TestCases/Misc/Linux/diag-stacktrace.cpp ``` `FAIL`s on 32 and 64-bit Linux/sparc64 (and on Solaris/sparcv9, too: the test isn't Linux-specific at all). With `UBSAN_OPTIONS=fast_unwind_on_fatal=1`, the stack trace shows a duplicate innermost frame: ``` compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:31: runtime error: execution reached the end of a value-returning function without returning a value #0 0x7003a708 in f() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:35 rust-lang#1 0x7003a708 in f() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:14:35 rust-lang#2 0x7003a714 in g() compiler-rt/test/ubsan/TestCases/Misc/Linux/diag-stacktrace.cpp:17:38 ``` which isn't seen with `fast_unwind_on_fatal=0`. This turns out to be another fallout from fixing `__builtin_return_address`/`__builtin_extract_return_addr` on SPARC. In `sanitizer_stacktrace_sparc.cpp` (`BufferedStackTrace::UnwindFast`) the `pc` arg is the return address, while `pc1` from the stack frame (`fr_savpc`) is the address of the `call` insn, leading to a double entry for the innermost frame in `trace_buffer[]`. This patch fixes this by moving the adjustment before all uses. Tested on `sparc64-unknown-linux-gnu` and `sparcv9-sun-solaris2.11` (with the `ubsan/TestCases/Misc/Linux` tests enabled).
…lvm#104148) `hasOperands` does not always execute matchers in the order they are written. This can cause issue in code using bindings when one operand matcher is relying on a binding set by the other. With this change, the first matcher present in the code is always executed first and any binding it sets are available to the second matcher. Simple example with current version (1 match) and new version (2 matches): ```bash > cat tmp.cpp int a = 13; int b = ((int) a) - a; int c = a - ((int) a); > clang-query tmp.cpp clang-query> set traversal IgnoreUnlessSpelledInSource clang-query> m binaryOperator(hasOperands(cStyleCastExpr(has(declRefExpr(hasDeclaration(valueDecl().bind("d"))))), declRefExpr(hasDeclaration(valueDecl(equalsBoundNode("d")))))) Match rust-lang#1: tmp.cpp:1:1: note: "d" binds here int a = 13; ^~~~~~~~~~ tmp.cpp:2:9: note: "root" binds here int b = ((int)a) - a; ^~~~~~~~~~~~ 1 match. > ./build/bin/clang-query tmp.cpp clang-query> set traversal IgnoreUnlessSpelledInSource clang-query> m binaryOperator(hasOperands(cStyleCastExpr(has(declRefExpr(hasDeclaration(valueDecl().bind("d"))))), declRefExpr(hasDeclaration(valueDecl(equalsBoundNode("d")))))) Match rust-lang#1: tmp.cpp:1:1: note: "d" binds here 1 | int a = 13; | ^~~~~~~~~~ tmp.cpp:2:9: note: "root" binds here 2 | int b = ((int)a) - a; | ^~~~~~~~~~~~ Match rust-lang#2: tmp.cpp:1:1: note: "d" binds here 1 | int a = 13; | ^~~~~~~~~~ tmp.cpp:3:9: note: "root" binds here 3 | int c = a - ((int)a); | ^~~~~~~~~~~~ 2 matches. ``` If this should be documented or regression tested anywhere please let me know where.
…104523) Compilers and language runtimes often use helper functions that are fundamentally uninteresting when debugging anything but the compiler/runtime itself. This patch introduces a user-extensible mechanism that allows for these frames to be hidden from backtraces and automatically skipped over when navigating the stack with `up` and `down`. This does not affect the numbering of frames, so `f <N>` will still provide access to the hidden frames. The `bt` output will also print a hint that frames have been hidden. My primary motivation for this feature is to hide thunks in the Swift programming language, but I'm including an example recognizer for `std::function::operator()` that I wished for myself many times while debugging LLDB. rdar://126629381 Example output. (Yes, my proof-of-concept recognizer could hide even more frames if we had a method that returned the function name without the return type or I used something that isn't based off regex, but it's really only meant as an example). before: ``` (lldb) thread backtrace --filtered=false * thread rust-lang#1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 * frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10 frame rust-lang#1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25 frame rust-lang#2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12 frame rust-lang#3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12 frame rust-lang#4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10 frame rust-lang#5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12 frame rust-lang#6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10 frame rust-lang#7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10 frame rust-lang#8: 0x0000000183cdf154 dyld`start + 2476 (lldb) ``` after ``` (lldb) bt * thread rust-lang#1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 * frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10 frame rust-lang#1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25 frame rust-lang#2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12 frame rust-lang#6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10 frame rust-lang#7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10 frame rust-lang#8: 0x0000000183cdf154 dyld`start + 2476 Note: Some frames were hidden by frame recognizers ```
This PR should not actually be merged, but pushed to a new branch. I can do this once we're happy with the changes, and decide on a branch name. FWIW, upstream is naming their stable branches like
release/7.x
, so I suggest arust/
prefix here, and indicating it's pre-8.0 would be nice too.llvm/
: All patches applied cleanly, or were already upstream, except 8b036feacf91 from Misc llvm#131. That was a revert which I believe has since been fixed properly by D54997 -- cc @nikic for verification.clang/
: Rust has no patches AFAICS.lld/
: The one MSVC cmake patch applied fine.lldb/
: All patches applied cleanly except for 8e114ffe6b6a, now 40e425a255be, but I think I resolved that OK. @tromey, are these patches headed upstream?I haven't actually tested that this works yet, nor integrated it into the rust repo. 😅