Skip to content

Commit

Permalink
Add basic f16 and f128 modules
Browse files Browse the repository at this point in the history
  • Loading branch information
tgross35 committed Mar 26, 2024
1 parent 6651c16 commit 6d2c0cf
Show file tree
Hide file tree
Showing 8 changed files with 469 additions and 0 deletions.
4 changes: 4 additions & 0 deletions library/core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -350,6 +350,10 @@ pub mod u8;
#[path = "num/shells/usize.rs"]
pub mod usize;

#[path = "num/f128.rs"]
pub mod f128;
#[path = "num/f16.rs"]
pub mod f16;
#[path = "num/f32.rs"]
pub mod f32;
#[path = "num/f64.rs"]
Expand Down
218 changes: 218 additions & 0 deletions library/core/src/num/f128.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
//! Constants for the `f128` quadruple-precision floating point type.
//!
//! *[See also the `f128` primitive type][f128].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f128` type.

#![unstable(feature = "f128", issue = "116909")]

/// Basic mathematical constants.
#[unstable(feature = "f128", issue = "116909")]
pub mod consts {
/// Archimedes' constant (π)
#[unstable(feature = "f128", issue = "116909")]
pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;

/// The full circle constant (τ)
///
/// Equal to 2π.
#[unstable(feature = "f128", issue = "116909")]
pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;

/// The golden ratio (φ)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;

/// The Euler-Mascheroni constant (γ)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;

/// π/2
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;

/// π/3
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;

/// π/4
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;

/// π/6
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;

/// π/8
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;

/// 1/π
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;

/// 1/sqrt(π)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_PI: f128 =
0.564189583547756286948079451560772585844050629328998856844085_f128;

/// 2/π
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;

/// 2/sqrt(π)
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_2_SQRT_PI: f128 =
1.12837916709551257389615890312154517168810125865799771368817_f128;

/// sqrt(2)
#[unstable(feature = "f128", issue = "116909")]
pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;

/// 1/sqrt(2)
#[unstable(feature = "f128", issue = "116909")]
pub const FRAC_1_SQRT_2: f128 =
0.70710678118654752440084436210484903928483593768847403658834_f128;

/// sqrt(3)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const SQRT_3: f128 = 1.732050807568877293527446341505872366942805253810380628055807_f128;
/// 1/sqrt(3)
#[unstable(feature = "more_float_constants", issue = "103883")]
pub const FRAC_1_SQRT_3: f128 =
0.577350269189625764509148780501957455647601751270126876018602_f128;

/// Euler's number (e)
#[unstable(feature = "f128", issue = "116909")]
pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;

/// log<sub>2</sub>(10)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;

/// log<sub>2</sub>(e)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;

/// log<sub>10</sub>(2)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;

/// log<sub>10</sub>(e)
#[unstable(feature = "f128", issue = "116909")]
pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;

/// ln(2)
#[unstable(feature = "f128", issue = "116909")]
pub const LN_2: f128 = 0.69314718055994530941723212145817656807550013436025525412068_f128;

/// ln(10)
#[unstable(feature = "f128", issue = "116909")]
pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
}

#[cfg(not(test))]
impl f128 {
/// The radix or base of the internal representation of `f128`.
#[unstable(feature = "f128", issue = "116909")]
pub const RADIX: u32 = 128;

/// Number of significant digits in base 2.
#[unstable(feature = "f128", issue = "116909")]
pub const MANTISSA_DIGITS: u32 = 112;

/// Approximate number of significant digits in base 10.
///
/// This is the maximum _x_ such that any decimal number with _x_
/// significant digits can be converted to `f32` and back without loss.
///
/// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
#[unstable(feature = "f128", issue = "116909")]
pub const DIGITS: u32 = 33;

/// [Machine epsilon] value for `f128`.
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
#[unstable(feature = "f128", issue = "116909")]
pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;

/// Smallest finite `f128` value.
///
/// Equal to &minus;[`MAX`].
#[cfg(not(bootstrap))]
#[unstable(feature = "f128", issue = "116909")]
pub const MIN: f128 = -1.1897314953572317650857593266280070162e+4932_f128;

/// Smallest positive normal `f128` value.
///
/// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_POSITIVE: f128 = 3.3621031431120935062626778173217526E-4932_f128;

/// Largest finite `f128` value.
///
/// Equal to
/// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MAX: f128 = 1.1897314953572317650857593266280070162e+4932_f128;

/// One greater than the minimum possible normal power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
/// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_EXP: i32 = -16381;

/// Maximum possible power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
/// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[unstable(feature = "f128", issue = "116909")]
pub const MAX_EXP: i32 = 16384;

/// Minimum possible normal power of 10 exponent.
///
/// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
#[unstable(feature = "f128", issue = "116909")]
pub const MIN_10_EXP: i32 = -4931;

/// Maximum possible power of 10 exponent.
///
/// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
#[unstable(feature = "f128", issue = "116909")]
pub const MAX_10_EXP: i32 = 4932;

/// Not a Number (NaN).
///
/// Note that IEEE 754 doesn't define just a single NaN value;
/// a plethora of bit patterns are considered to be NaN.
/// Furthermore, the standard makes a difference
/// between a "signaling" and a "quiet" NaN,
/// and allows inspecting its "payload" (the unspecified bits in the bit pattern).
/// This constant isn't guaranteed to equal to any specific NaN bitpattern,
/// and the stability of its representation over Rust versions
/// and target platforms isn't guaranteed.
#[cfg(not(bootstrap))]
#[rustc_diagnostic_item = "f128_nan"]
#[unstable(feature = "f128", issue = "116909")]
pub const NAN: f128 = 0.0_f128 / 0.0_f128;

/// Infinity (∞).
#[cfg(not(bootstrap))]
#[unstable(feature = "f128", issue = "116909")]
pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;

/// Negative infinity (−∞).
#[cfg(not(bootstrap))]
#[unstable(feature = "f128", issue = "116909")]
pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
}
Loading

0 comments on commit 6d2c0cf

Please sign in to comment.