Skip to content

Commit

Permalink
Extract the local != local case in borrow_conflicts_with_place.
Browse files Browse the repository at this point in the history
  • Loading branch information
cjgillot committed Jun 27, 2023
1 parent 372366d commit b798939
Showing 1 changed file with 67 additions and 76 deletions.
143 changes: 67 additions & 76 deletions compiler/rustc_borrowck/src/places_conflict.rs
Original file line number Diff line number Diff line change
@@ -1,11 +1,63 @@
//! The borrowck rules for proving disjointness are applied from the "root" of the
//! borrow forwards, iterating over "similar" projections in lockstep until
//! we can prove overlap one way or another. Essentially, we treat `Overlap` as
//! a monoid and report a conflict if the product ends up not being `Disjoint`.
//!
//! At each step, if we didn't run out of borrow or place, we know that our elements
//! have the same type, and that they only overlap if they are the identical.
//!
//! For example, if we are comparing these:
//! ```text
//! BORROW: (*x1[2].y).z.a
//! ACCESS: (*x1[i].y).w.b
//! ```
//!
//! Then our steps are:
//! ```text
//! x1 | x1 -- places are the same
//! x1[2] | x1[i] -- equal or disjoint (disjoint if indexes differ)
//! x1[2].y | x1[i].y -- equal or disjoint
//! *x1[2].y | *x1[i].y -- equal or disjoint
//! (*x1[2].y).z | (*x1[i].y).w -- we are disjoint and don't need to check more!
//! ```
//!
//! Because `zip` does potentially bad things to the iterator inside, this loop
//! also handles the case where the access might be a *prefix* of the borrow, e.g.
//!
//! ```text
//! BORROW: (*x1[2].y).z.a
//! ACCESS: x1[i].y
//! ```
//!
//! Then our steps are:
//! ```text
//! x1 | x1 -- places are the same
//! x1[2] | x1[i] -- equal or disjoint (disjoint if indexes differ)
//! x1[2].y | x1[i].y -- equal or disjoint
//! ```
//!
//! -- here we run out of access - the borrow can access a part of it. If this
//! is a full deep access, then we *know* the borrow conflicts with it. However,
//! if the access is shallow, then we can proceed:
//!
//! ```text
//! x1[2].y | (*x1[i].y) -- a deref! the access can't get past this, so we
//! are disjoint
//! ```
//!
//! Our invariant is, that at each step of the iteration:
//! - If we didn't run out of access to match, our borrow and access are comparable
//! and either equal or disjoint.
//! - If we did run out of access, the borrow can access a part of it.

#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
use crate::ArtificialField;
use crate::Overlap;
use crate::{AccessDepth, Deep, Shallow};
use rustc_hir as hir;
use rustc_middle::mir::{
Body, BorrowKind, Local, MutBorrowKind, Place, PlaceElem, PlaceRef, ProjectionElem,
Body, BorrowKind, MutBorrowKind, Place, PlaceElem, PlaceRef, ProjectionElem,
};
use rustc_middle::ty::{self, TyCtxt};
use std::cmp::max;
Expand Down Expand Up @@ -48,7 +100,7 @@ pub fn places_conflict<'tcx>(
/// access depth. The `bias` parameter is used to determine how the unknowable (comparing runtime
/// array indices, for example) should be interpreted - this depends on what the caller wants in
/// order to make the conservative choice and preserve soundness.
#[instrument(level = "debug", skip(tcx, body))]
#[inline]
pub(super) fn borrow_conflicts_with_place<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
Expand All @@ -58,15 +110,24 @@ pub(super) fn borrow_conflicts_with_place<'tcx>(
access: AccessDepth,
bias: PlaceConflictBias,
) -> bool {
let borrow_local = borrow_place.local;
let access_local = access_place.local;

if borrow_local != access_local {
// We have proven the borrow disjoint - further projections will remain disjoint.
return false;
}

// This Local/Local case is handled by the more general code below, but
// it's so common that it's a speed win to check for it first.
if let Some(l1) = borrow_place.as_local() && let Some(l2) = access_place.as_local() {
return l1 == l2;
if borrow_place.projection.is_empty() && access_place.projection.is_empty() {
return true;
}

place_components_conflict(tcx, body, borrow_place, borrow_kind, access_place, access, bias)
}

#[instrument(level = "debug", skip(tcx, body))]
fn place_components_conflict<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
Expand All @@ -76,65 +137,10 @@ fn place_components_conflict<'tcx>(
access: AccessDepth,
bias: PlaceConflictBias,
) -> bool {
// The borrowck rules for proving disjointness are applied from the "root" of the
// borrow forwards, iterating over "similar" projections in lockstep until
// we can prove overlap one way or another. Essentially, we treat `Overlap` as
// a monoid and report a conflict if the product ends up not being `Disjoint`.
//
// At each step, if we didn't run out of borrow or place, we know that our elements
// have the same type, and that they only overlap if they are the identical.
//
// For example, if we are comparing these:
// BORROW: (*x1[2].y).z.a
// ACCESS: (*x1[i].y).w.b
//
// Then our steps are:
// x1 | x1 -- places are the same
// x1[2] | x1[i] -- equal or disjoint (disjoint if indexes differ)
// x1[2].y | x1[i].y -- equal or disjoint
// *x1[2].y | *x1[i].y -- equal or disjoint
// (*x1[2].y).z | (*x1[i].y).w -- we are disjoint and don't need to check more!
//
// Because `zip` does potentially bad things to the iterator inside, this loop
// also handles the case where the access might be a *prefix* of the borrow, e.g.
//
// BORROW: (*x1[2].y).z.a
// ACCESS: x1[i].y
//
// Then our steps are:
// x1 | x1 -- places are the same
// x1[2] | x1[i] -- equal or disjoint (disjoint if indexes differ)
// x1[2].y | x1[i].y -- equal or disjoint
//
// -- here we run out of access - the borrow can access a part of it. If this
// is a full deep access, then we *know* the borrow conflicts with it. However,
// if the access is shallow, then we can proceed:
//
// x1[2].y | (*x1[i].y) -- a deref! the access can't get past this, so we
// are disjoint
//
// Our invariant is, that at each step of the iteration:
// - If we didn't run out of access to match, our borrow and access are comparable
// and either equal or disjoint.
// - If we did run out of access, the borrow can access a part of it.

let borrow_local = borrow_place.local;
let access_local = access_place.local;

match place_base_conflict(borrow_local, access_local) {
Overlap::Arbitrary => {
bug!("Two base can't return Arbitrary");
}
Overlap::EqualOrDisjoint => {
// This is the recursive case - proceed to the next element.
}
Overlap::Disjoint => {
// We have proven the borrow disjoint - further
// projections will remain disjoint.
debug!("borrow_conflicts_with_place: disjoint");
return false;
}
}
// borrow_conflicts_with_place should have checked that.
assert_eq!(borrow_local, access_local);

// loop invariant: borrow_c is always either equal to access_c or disjoint from it.
for ((borrow_place, borrow_c), &access_c) in
Expand Down Expand Up @@ -277,21 +283,6 @@ fn place_components_conflict<'tcx>(
}
}

// Given that the bases of `elem1` and `elem2` are always either equal
// or disjoint (and have the same type!), return the overlap situation
// between `elem1` and `elem2`.
fn place_base_conflict(l1: Local, l2: Local) -> Overlap {
if l1 == l2 {
// the same local - base case, equal
debug!("place_element_conflict: DISJOINT-OR-EQ-LOCAL");
Overlap::EqualOrDisjoint
} else {
// different locals - base case, disjoint
debug!("place_element_conflict: DISJOINT-LOCAL");
Overlap::Disjoint
}
}

// Given that the bases of `elem1` and `elem2` are always either equal
// or disjoint (and have the same type!), return the overlap situation
// between `elem1` and `elem2`.
Expand Down

0 comments on commit b798939

Please sign in to comment.