Skip to content

Commit

Permalink
check that Scalar layout is newtype around a suitable type
Browse files Browse the repository at this point in the history
  • Loading branch information
RalfJung committed Aug 1, 2022
1 parent 1f5d8d4 commit e0d5c19
Showing 1 changed file with 135 additions and 40 deletions.
175 changes: 135 additions & 40 deletions compiler/rustc_middle/src/ty/layout.rs
Original file line number Diff line number Diff line change
Expand Up @@ -222,13 +222,9 @@ impl<'tcx> fmt::Display for LayoutError<'tcx> {
}

/// Enforce some basic invariants on layouts.
fn sanity_check_layout<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
layout: &TyAndLayout<'tcx>,
) {
fn sanity_check_layout<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
// Type-level uninhabitedness should always imply ABI uninhabitedness.
if tcx.conservative_is_privately_uninhabited(param_env.and(layout.ty)) {
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
assert!(layout.abi.is_uninhabited());
}

Expand All @@ -237,83 +233,182 @@ fn sanity_check_layout<'tcx>(
}

if cfg!(debug_assertions) {
fn check_layout_abi<'tcx>(tcx: TyCtxt<'tcx>, layout: Layout<'tcx>) {
match layout.abi() {
/// Yields non-1-ZST fields of the type
fn non_zst_fields<'tcx, 'a>(
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &'a TyAndLayout<'tcx>,
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
(0..layout.layout.fields().count()).filter_map(|i| {
let field = layout.field(cx, i);
let zst = field.is_zst() && field.align.abi.bytes() == 1;
(!zst).then(|| (layout.fields.offset(i), field))
})
}

fn skip_newtypes<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
layout: &TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
// Definitely not a newtype of anything.
return *layout;
}
let mut fields = non_zst_fields(cx, layout);
let Some(first) = fields.next() else {
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
return *layout
};
if fields.next().is_none() {
let (offset, first) = first;
if offset == Size::ZERO && first.layout.size() == layout.size {
// This is a newtype, so keep recursing.
// FIXME(RalfJung): I don't think it would be correct to do any checks for
// alignment here, so we don't. Is that correct?
return skip_newtypes(cx, &first);
}
}
// No more newtypes here.
*layout
}

fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
match layout.layout.abi() {
Abi::Scalar(scalar) => {
// No padding in scalars.
let size = scalar.size(cx);
let align = scalar.align(cx).abi;
assert_eq!(
layout.align().abi,
scalar.align(&tcx).abi,
"alignment mismatch between ABI and layout in {layout:#?}"
layout.layout.size(),
size,
"size mismatch between ABI and layout in {layout:#?}"
);
assert_eq!(
layout.size(),
scalar.size(&tcx),
"size mismatch between ABI and layout in {layout:#?}"
layout.layout.align().abi,
align,
"alignment mismatch between ABI and layout in {layout:#?}"
);
// Check that this matches the underlying field.
let inner = skip_newtypes(cx, layout);
assert!(
matches!(inner.layout.abi(), Abi::Scalar(_)),
"`Scalar` type {} is newtype around non-`Scalar` type {}",
layout.ty,
inner.ty
);
match inner.layout.fields() {
FieldsShape::Primitive => {
// Fine.
}
FieldsShape::Arbitrary { .. } => {
// Should be an enum, the only field is the discriminant.
assert!(
inner.ty.is_enum(),
"`Scalar` layout for non-primitive non-enum type {}",
inner.ty
);
assert_eq!(
inner.layout.fields().count(),
1,
"`Scalar` layout for multiple-field type in {inner:#?}",
);
let offset = inner.layout.fields().offset(0);
let field = inner.field(cx, 0);
// The field should be at the right offset, and match the `scalar` layout.
assert_eq!(
offset,
Size::ZERO,
"`Scalar` field at non-0 offset in {inner:#?}",
);
assert_eq!(
field.size, size,
"`Scalar` field with bad size in {inner:#?}",
);
assert_eq!(
field.align.abi, align,
"`Scalar` field with bad align in {inner:#?}",
);
}
_ => {
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
}
}
}
Abi::Vector { count, element } => {
// No padding in vectors. Alignment can be strengthened, though.
assert!(
layout.align().abi >= element.align(&tcx).abi,
layout.layout.align().abi >= element.align(cx).abi,
"alignment mismatch between ABI and layout in {layout:#?}"
);
let size = element.size(&tcx) * count;
let size = element.size(cx) * count;
assert_eq!(
layout.size(),
size.align_to(tcx.data_layout().vector_align(size).abi),
layout.layout.size(),
size.align_to(cx.data_layout().vector_align(size).abi),
"size mismatch between ABI and layout in {layout:#?}"
);
}
Abi::ScalarPair(scalar1, scalar2) => {
// Sanity-check scalar pairs. These are a bit more flexible and support
// padding, but we can at least ensure both fields actually fit into the layout
// and the alignment requirement has not been weakened.
let align1 = scalar1.align(&tcx).abi;
let align2 = scalar2.align(&tcx).abi;
let align1 = scalar1.align(cx).abi;
let align2 = scalar2.align(cx).abi;
assert!(
layout.align().abi >= cmp::max(align1, align2),
layout.layout.align().abi >= cmp::max(align1, align2),
"alignment mismatch between ABI and layout in {layout:#?}",
);
let field2_offset = scalar1.size(&tcx).align_to(align2);
let field2_offset = scalar1.size(cx).align_to(align2);
assert!(
layout.size() >= field2_offset + scalar2.size(&tcx),
layout.layout.size() >= field2_offset + scalar2.size(cx),
"size mismatch between ABI and layout in {layout:#?}"
);
}
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
}
}

check_layout_abi(tcx, layout.layout);
check_layout_abi(cx, layout);

if let Variants::Multiple { variants, .. } = &layout.variants {
for variant in variants {
check_layout_abi(tcx, *variant);
for variant in variants.iter() {
// No nested "multiple".
assert!(matches!(variant.variants(), Variants::Single { .. }));
// Skip empty variants.
if variant.size() == Size::ZERO
|| variant.fields().count() == 0
|| variant.abi().is_uninhabited()
{
// These are never actually accessed anyway, so we can skip them. (Note that
// sometimes, variants with fields have size 0, and sometimes, variants without
// fields have non-0 size.)
continue;
}
// Variants should have the same or a smaller size as the full thing.
// Variants should have the same or a smaller size as the full thing,
// and same for alignment.
if variant.size() > layout.size {
bug!(
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
layout.size.bytes(),
variant.size().bytes(),
)
}
if variant.align().abi > layout.align.abi {
bug!(
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
layout.align.abi.bytes(),
variant.align().abi.bytes(),
)
}
// Skip empty variants.
if variant.size() == Size::ZERO
|| variant.fields().count() == 0
|| variant.abi().is_uninhabited()
{
// These are never actually accessed anyway, so we can skip the coherence check
// for them. They also fail that check, since they have
// `Aggregate`/`Uninhbaited` ABI even when the main type is
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
// 0, and sometimes, variants without fields have non-0 size.)
continue;
}
// The top-level ABI and the ABI of the variants should be coherent.
let scalar_coherent = |s1: Scalar, s2: Scalar| {
s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
};
let abi_coherent = match (layout.abi, variant.abi()) {
(Abi::Scalar(..), Abi::Scalar(..)) => true,
(Abi::ScalarPair(..), Abi::ScalarPair(..)) => true,
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
}
(Abi::Uninhabited, _) => true,
(Abi::Aggregate { .. }, _) => true,
_ => false,
Expand Down Expand Up @@ -372,7 +467,7 @@ fn layout_of<'tcx>(

cx.record_layout_for_printing(layout);

sanity_check_layout(tcx, param_env, &layout);
sanity_check_layout(&cx, &layout);

Ok(layout)
})
Expand Down

0 comments on commit e0d5c19

Please sign in to comment.