Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move the cast_float_to_int fallback code to GCC #100653

Merged
merged 1 commit into from
Aug 30, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion Cargo.lock
Original file line number Diff line number Diff line change
Expand Up @@ -3721,7 +3721,6 @@ dependencies = [
"object 0.29.0",
"pathdiff",
"regex",
"rustc_apfloat",
"rustc_arena",
"rustc_ast",
"rustc_attr",
Expand Down
174 changes: 169 additions & 5 deletions compiler/rustc_codegen_gcc/src/builder.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,11 @@ use gccjit::{
Type,
UnaryOp,
};
use rustc_apfloat::{ieee, Float, Round, Status};
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::common::{AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope};
use rustc_codegen_ssa::common::{
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
Expand All @@ -31,6 +34,7 @@ use rustc_codegen_ssa::traits::{
StaticBuilderMethods,
};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_middle::ty::{ParamEnv, Ty, TyCtxt};
use rustc_middle::ty::layout::{FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, TyAndLayout};
use rustc_span::Span;
Expand Down Expand Up @@ -1271,12 +1275,12 @@ impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
val
}

fn fptoui_sat(&mut self, _val: RValue<'gcc>, _dest_ty: Type<'gcc>) -> Option<RValue<'gcc>> {
None
fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.fptoint_sat(false, val, dest_ty)
}

fn fptosi_sat(&mut self, _val: RValue<'gcc>, _dest_ty: Type<'gcc>) -> Option<RValue<'gcc>> {
None
fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.fptoint_sat(true, val, dest_ty)
}

fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) {
Expand All @@ -1285,6 +1289,166 @@ impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
}

impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
fn fptoint_sat(&mut self, signed: bool, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let src_ty = self.cx.val_ty(val);
let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
(self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
} else {
(src_ty, dest_ty)
};

// FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13
// added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well.
// Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are
// still LLVM-specific. This should be updated, and use better GCC specifics if possible.

let int_width = self.cx.int_width(int_ty);
let float_width = self.cx.float_width(float_ty);
// LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the
// destination integer type after rounding towards zero. This `undef` value can cause UB in
// safe code (see issue #10184), so we implement a saturating conversion on top of it:
// Semantically, the mathematical value of the input is rounded towards zero to the next
// mathematical integer, and then the result is clamped into the range of the destination
// integer type. Positive and negative infinity are mapped to the maximum and minimum value of
// the destination integer type. NaN is mapped to 0.
//
// Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
// a value representable in int_ty.
// They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
// Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
// int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
// representable. Note that this only works if float_ty's exponent range is sufficiently large.
// f16 or 256 bit integers would break this property. Right now the smallest float type is f32
// with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
// On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
// we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
// This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
let int_max = |signed: bool, int_width: u64| -> u128 {
let shift_amount = 128 - int_width;
if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
};
let int_min = |signed: bool, int_width: u64| -> i128 {
if signed { i128::MIN >> (128 - int_width) } else { 0 }
};

let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
// To implement saturation, we perform the following steps:
//
// 1. Cast val to an integer with fpto[su]i. This may result in undef.
// 2. Compare val to f_min and f_max, and use the comparison results to select:
// a) int_ty::MIN if val < f_min or val is NaN
// b) int_ty::MAX if val > f_max
// c) the result of fpto[su]i otherwise
// 3. If val is NaN, return 0.0, otherwise return the result of step 2.
//
// This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
// destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
// undef does not introduce any non-determinism either.
// More importantly, the above procedure correctly implements saturating conversion.
// Proof (sketch):
// If val is NaN, 0 is returned by definition.
// Otherwise, val is finite or infinite and thus can be compared with f_min and f_max.
// This yields three cases to consider:
// (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
// saturating conversion for inputs in that range.
// (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded
// (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
// than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX
// is correct.
// (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
// int_ty::MIN and therefore the return value of int_ty::MIN is correct.
// QED.

let float_bits_to_llval = |bx: &mut Self, bits| {
let bits_llval = match float_width {
32 => bx.cx().const_u32(bits as u32),
64 => bx.cx().const_u64(bits as u64),
n => bug!("unsupported float width {}", n),
};
bx.bitcast(bits_llval, float_ty)
};
let (f_min, f_max) = match float_width {
32 => compute_clamp_bounds_single(signed, int_width),
64 => compute_clamp_bounds_double(signed, int_width),
n => bug!("unsupported float width {}", n),
};
let f_min = float_bits_to_llval(self, f_min);
let f_max = float_bits_to_llval(self, f_max);
let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width));
let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128);
let zero = self.cx.const_uint(int_ty, 0);

// If we're working with vectors, constants must be "splatted": the constant is duplicated
// into each lane of the vector. The algorithm stays the same, we are just using the
// same constant across all lanes.
let maybe_splat = |bx: &mut Self, val| {
if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
bx.vector_splat(bx.vector_length(dest_ty), val)
} else {
val
}
};
let f_min = maybe_splat(self, f_min);
let f_max = maybe_splat(self, f_max);
let int_max = maybe_splat(self, int_max);
let int_min = maybe_splat(self, int_min);
let zero = maybe_splat(self, zero);

// Step 1 ...
let fptosui_result = if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) };
let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);

// Step 2: We use two comparisons and two selects, with %s1 being the
// result:
// %less_or_nan = fcmp ult %val, %f_min
// %greater = fcmp olt %val, %f_max
// %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
// %s1 = select %greater, int_ty::MAX, %s0
// Note that %less_or_nan uses an *unordered* comparison. This
// comparison is true if the operands are not comparable (i.e., if val is
// NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
// val is NaN.
//
// Performance note: Unordered comparison can be lowered to a "flipped"
// comparison and a negation, and the negation can be merged into the
// select. Therefore, it not necessarily any more expensive than an
// ordered ("normal") comparison. Whether these optimizations will be
// performed is ultimately up to the backend, but at least x86 does
// perform them.
let s0 = self.select(less_or_nan, int_min, fptosui_result);
let s1 = self.select(greater, int_max, s0);

// Step 3: NaN replacement.
// For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN.
// Therefore we only need to execute this step for signed integer types.
if signed {
// LLVM has no isNaN predicate, so we use (val == val) instead
let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
self.select(cmp, s1, zero)
} else {
s1
}
}

#[cfg(feature="master")]
pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> {
let struct_type = mask.get_type().is_struct().expect("mask of struct type");
Expand Down
1 change: 1 addition & 0 deletions compiler/rustc_codegen_gcc/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#![warn(rust_2018_idioms)]
#![warn(unused_lifetimes)]

extern crate rustc_apfloat;
extern crate rustc_ast;
extern crate rustc_codegen_ssa;
extern crate rustc_data_structures;
Expand Down
13 changes: 4 additions & 9 deletions compiler/rustc_codegen_llvm/src/builder.rs
Original file line number Diff line number Diff line change
Expand Up @@ -725,11 +725,11 @@ impl<'a, 'll, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'll, 'tcx> {
unsafe { llvm::LLVMBuildSExt(self.llbuilder, val, dest_ty, UNNAMED) }
}

fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> Option<&'ll Value> {
fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
self.fptoint_sat(false, val, dest_ty)
}

fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> Option<&'ll Value> {
fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
self.fptoint_sat(true, val, dest_ty)
}

Expand Down Expand Up @@ -1429,12 +1429,7 @@ impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
}
}

fn fptoint_sat(
&mut self,
signed: bool,
val: &'ll Value,
dest_ty: &'ll Type,
) -> Option<&'ll Value> {
fn fptoint_sat(&mut self, signed: bool, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
let src_ty = self.cx.val_ty(val);
let (float_ty, int_ty, vector_length) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
Expand All @@ -1459,7 +1454,7 @@ impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
format!("llvm.{}.sat.i{}.f{}", instr, int_width, float_width)
};
let f = self.declare_cfn(&name, llvm::UnnamedAddr::No, self.type_func(&[src_ty], dest_ty));
Some(self.call(self.type_func(&[src_ty], dest_ty), f, &[val], None))
self.call(self.type_func(&[src_ty], dest_ty), f, &[val], None)
}

pub(crate) fn landing_pad(
Expand Down
1 change: 0 additions & 1 deletion compiler/rustc_codegen_ssa/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@ rustc_arena = { path = "../rustc_arena" }
rustc_ast = { path = "../rustc_ast" }
rustc_span = { path = "../rustc_span" }
rustc_middle = { path = "../rustc_middle" }
rustc_apfloat = { path = "../rustc_apfloat" }
rustc_attr = { path = "../rustc_attr" }
rustc_symbol_mangling = { path = "../rustc_symbol_mangling" }
rustc_data_structures = { path = "../rustc_data_structures" }
Expand Down
Loading