Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Median of Medians fallback to introselect #107522

Merged
merged 2 commits into from
May 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions library/core/src/slice/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ mod index;
mod iter;
mod raw;
mod rotate;
mod select;
mod specialize;

#[unstable(feature = "str_internals", issue = "none")]
Expand Down Expand Up @@ -2776,7 +2777,7 @@ impl<T> [T] {
where
T: Ord,
{
sort::partition_at_index(self, index, T::lt)
select::partition_at_index(self, index, T::lt)
}

/// Reorder the slice with a comparator function such that the element at `index` is at its
Expand Down Expand Up @@ -2831,7 +2832,7 @@ impl<T> [T] {
where
F: FnMut(&T, &T) -> Ordering,
{
sort::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
}

/// Reorder the slice with a key extraction function such that the element at `index` is at its
Expand Down Expand Up @@ -2887,7 +2888,7 @@ impl<T> [T] {
F: FnMut(&T) -> K,
K: Ord,
{
sort::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
}

/// Moves all consecutive repeated elements to the end of the slice according to the
Expand Down
302 changes: 302 additions & 0 deletions library/core/src/slice/select.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
//! Slice selection
//!
//! This module contains the implementation for `slice::select_nth_unstable`.
//! It uses an introselect algorithm based on Orson Peters' pattern-defeating quicksort,
//! published at: <https://github.com/orlp/pdqsort>
//!
//! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther
//! for pivot selection. Using this as a fallback ensures O(n) worst case running time with
//! better performance than one would get using heapsort as fallback.

use crate::cmp;
use crate::mem::{self, SizedTypeProperties};
use crate::slice::sort::{
break_patterns, choose_pivot, insertion_sort_shift_left, partition, partition_equal,
};

// For slices of up to this length it's probably faster to simply sort them.
// Defined at the module scope because it's used in multiple functions.
const MAX_INSERTION: usize = 10;

fn partition_at_index_loop<'a, T, F>(
mut v: &'a mut [T],
mut index: usize,
is_less: &mut F,
mut pred: Option<&'a T>,
) where
F: FnMut(&T, &T) -> bool,
{
// Limit the amount of iterations and fall back to fast deterministic selection
// to ensure O(n) worst case running time. This limit needs to be constant, because
// using `ilog2(len)` like in `sort` would result in O(n log n) time complexity.
// The exact value of the limit is chosen somewhat arbitrarily, but for most inputs bad pivot
// selections should be relatively rare, so the limit usually shouldn't be reached
// anyways.
let mut limit = 16;

// True if the last partitioning was reasonably balanced.
let mut was_balanced = true;

loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}

if limit == 0 {
median_of_medians(v, is_less, index);
return;
}

// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we'll choose a better pivot this time.
if !was_balanced {
break_patterns(v);
limit -= 1;
}

// Choose a pivot
let (pivot, _) = choose_pivot(v, is_less);

// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
if let Some(p) = pred {
if !is_less(p, &v[pivot]) {
let mid = partition_equal(v, pivot, is_less);

// If we've passed our index, then we're good.
if mid > index {
return;
}

// Otherwise, continue sorting elements greater than the pivot.
v = &mut v[mid..];
index = index - mid;
pred = None;
continue;
}
}

let (mid, _) = partition(v, pivot, is_less);
was_balanced = cmp::min(mid, v.len() - mid) >= v.len() / 8;

// Split the slice into `left`, `pivot`, and `right`.
let (left, right) = v.split_at_mut(mid);
let (pivot, right) = right.split_at_mut(1);
let pivot = &pivot[0];

if mid < index {
v = right;
index = index - mid - 1;
pred = Some(pivot);
} else if mid > index {
v = left;
} else {
// If mid == index, then we're done, since partition() guaranteed that all elements
// after mid are greater than or equal to mid.
return;
}
}
}

/// Helper function that returns the index of the minimum element in the slice using the given
/// comparator function
fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(t.1, acc.1) { t } else { acc })
.map(|(i, _)| i)
}

/// Helper function that returns the index of the maximum element in the slice using the given
/// comparator function
fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(acc.1, t.1) { t } else { acc })
.map(|(i, _)| i)
}

/// Reorder the slice such that the element at `index` is at its final sorted position.
pub fn partition_at_index<T, F>(
v: &mut [T],
index: usize,
mut is_less: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T, &T) -> bool,
{
if index >= v.len() {
panic!("partition_at_index index {} greater than length of slice {}", index, v.len());
}

if T::IS_ZST {
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
} else if index == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, &mut is_less).unwrap();
v.swap(max_idx, index);
} else if index == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, &mut is_less).unwrap();
v.swap(min_idx, index);
} else {
partition_at_index_loop(v, index, &mut is_less, None);
}

let (left, right) = v.split_at_mut(index);
let (pivot, right) = right.split_at_mut(1);
let pivot = &mut pivot[0];
(left, pivot, right)
}

/// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time.
/// This is essentially a quickselect that uses Tukey's Ninther for pivot selection
fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) {
// Since this function isn't public, it should never be called with an out-of-bounds index.
debug_assert!(k < v.len());

// If T is as ZST, `partition_at_index` will already return early.
debug_assert!(!T::IS_ZST);

// We now know that `k < v.len() <= isize::MAX`
loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}

// `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element,
// so we catch them here and just do a linear search.
if k == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, is_less).unwrap();
v.swap(max_idx, k);
return;
} else if k == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, is_less).unwrap();
v.swap(min_idx, k);
return;
}

let p = median_of_ninthers(v, is_less);

if p == k {
return;
} else if p > k {
v = &mut v[..p];
} else {
// Since `p < k < v.len()`, `p + 1` doesn't overflow and is
// a valid index into the slice.
v = &mut v[p + 1..];
k -= p + 1;
}
}
}

// Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot
// as close as possible to the median of the slice. For more details on how the algorithm
// operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>.
fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize {
// use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms.
let frac = if v.len() <= 1024 {
v.len() / 12
} else if v.len() <= 128_usize.saturating_mul(1024) {
v.len() / 64
} else {
v.len() / 1024
};

let pivot = frac / 2;
let lo = v.len() / 2 - pivot;
let hi = frac + lo;
let gap = (v.len() - 9 * frac) / 4;
let mut a = lo - 4 * frac - gap;
let mut b = hi + gap;
for i in lo..hi {
ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2);
a += 3;
b += 3;
}

median_of_medians(&mut v[lo..lo + frac], is_less, pivot);
partition(v, lo + pivot, is_less).0
}

/// Moves around the 9 elements at the indices a..i, such that
/// `v[d]` contains the median of the 9 elements and the other
/// elements are partitioned around it.
fn ninther<T, F: FnMut(&T, &T) -> bool>(
v: &mut [T],
is_less: &mut F,
a: usize,
mut b: usize,
c: usize,
mut d: usize,
e: usize,
mut f: usize,
g: usize,
mut h: usize,
i: usize,
) {
b = median_idx(v, is_less, a, b, c);
h = median_idx(v, is_less, g, h, i);
if is_less(&v[h], &v[b]) {
mem::swap(&mut b, &mut h);
}
if is_less(&v[f], &v[d]) {
mem::swap(&mut d, &mut f);
}
if is_less(&v[e], &v[d]) {
// do nothing
} else if is_less(&v[f], &v[e]) {
d = f;
} else {
if is_less(&v[e], &v[b]) {
v.swap(e, b);
} else if is_less(&v[h], &v[e]) {
v.swap(e, h);
}
return;
}
if is_less(&v[d], &v[b]) {
d = b;
} else if is_less(&v[h], &v[d]) {
d = h;
}

v.swap(d, e);
}

/// returns the index pointing to the median of the 3
/// elements `v[a]`, `v[b]` and `v[c]`
fn median_idx<T, F: FnMut(&T, &T) -> bool>(
v: &[T],
is_less: &mut F,
mut a: usize,
b: usize,
mut c: usize,
) -> usize {
if is_less(&v[c], &v[a]) {
mem::swap(&mut a, &mut c);
}
if is_less(&v[c], &v[b]) {
return c;
}
if is_less(&v[b], &v[a]) {
return a;
}
b
}
Loading