Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename rustc_abi::Abi to BackendRepr #132246

Merged
merged 7 commits into from
Oct 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions compiler/rustc_abi/src/callconv.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ mod abi {
#[cfg(feature = "nightly")]
use rustc_macros::HashStable_Generic;

#[cfg(feature = "nightly")]
use crate::{Abi, FieldsShape, TyAbiInterface, TyAndLayout};
use crate::{Align, HasDataLayout, Size};
#[cfg(feature = "nightly")]
use crate::{BackendRepr, FieldsShape, TyAbiInterface, TyAndLayout};

#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
Expand Down Expand Up @@ -128,27 +128,27 @@ impl<'a, Ty> TyAndLayout<'a, Ty> {
where
Ty: TyAbiInterface<'a, C> + Copy,
{
match self.abi {
Abi::Uninhabited => Err(Heterogeneous),
match self.backend_repr {
BackendRepr::Uninhabited => Err(Heterogeneous),

// The primitive for this algorithm.
Abi::Scalar(scalar) => {
BackendRepr::Scalar(scalar) => {
let kind = match scalar.primitive() {
abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
abi::Float(_) => RegKind::Float,
};
Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
}

Abi::Vector { .. } => {
BackendRepr::Vector { .. } => {
assert!(!self.is_zst());
Ok(HomogeneousAggregate::Homogeneous(Reg {
kind: RegKind::Vector,
size: self.size,
}))
}

Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
BackendRepr::ScalarPair(..) | BackendRepr::Memory { sized: true } => {
// Helper for computing `homogeneous_aggregate`, allowing a custom
// starting offset (used below for handling variants).
let from_fields_at =
Expand Down Expand Up @@ -246,7 +246,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> {
Ok(result)
}
}
Abi::Aggregate { sized: false } => Err(Heterogeneous),
BackendRepr::Memory { sized: false } => Err(Heterogeneous),
}
}
}
104 changes: 53 additions & 51 deletions compiler/rustc_abi/src/layout.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ use rustc_index::Idx;
use tracing::debug;

use crate::{
Abi, AbiAndPrefAlign, Align, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
AbiAndPrefAlign, Align, BackendRepr, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer,
LayoutData, Niche, NonZeroUsize, Primitive, ReprOptions, Scalar, Size, StructKind, TagEncoding,
Variants, WrappingRange,
};
Expand Down Expand Up @@ -125,7 +125,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
offsets: [Size::ZERO, b_offset].into(),
memory_index: [0, 1].into(),
},
abi: Abi::ScalarPair(a, b),
backend_repr: BackendRepr::ScalarPair(a, b),
largest_niche,
align,
size,
Expand Down Expand Up @@ -216,7 +216,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Primitive,
abi: Abi::Uninhabited,
backend_repr: BackendRepr::Uninhabited,
largest_niche: None,
align: dl.i8_align,
size: Size::ZERO,
Expand Down Expand Up @@ -331,7 +331,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {

if let Ok(common) = common_non_zst_abi_and_align {
// Discard valid range information and allow undef
let field_abi = field.abi.to_union();
let field_abi = field.backend_repr.to_union();

if let Some((common_abi, common_align)) = common {
if common_abi != field_abi {
Expand All @@ -340,7 +340,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
} else {
// Fields with the same non-Aggregate ABI should also
// have the same alignment
if !matches!(common_abi, Abi::Aggregate { .. }) {
if !matches!(common_abi, BackendRepr::Memory { .. }) {
assert_eq!(
common_align, field.align.abi,
"non-Aggregate field with matching ABI but differing alignment"
Expand Down Expand Up @@ -369,11 +369,11 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
// If all non-ZST fields have the same ABI, we may forward that ABI
// for the union as a whole, unless otherwise inhibited.
let abi = match common_non_zst_abi_and_align {
Err(AbiMismatch) | Ok(None) => Abi::Aggregate { sized: true },
Err(AbiMismatch) | Ok(None) => BackendRepr::Memory { sized: true },
Ok(Some((abi, _))) => {
if abi.inherent_align(dl).map(|a| a.abi) != Some(align.abi) {
// Mismatched alignment (e.g. union is #[repr(packed)]): disable opt
Abi::Aggregate { sized: true }
BackendRepr::Memory { sized: true }
} else {
abi
}
Expand All @@ -387,7 +387,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Ok(LayoutData {
variants: Variants::Single { index: only_variant_idx },
fields: FieldsShape::Union(union_field_count),
abi,
backend_repr: abi,
largest_niche: None,
align,
size: size.align_to(align.abi),
Expand Down Expand Up @@ -434,23 +434,23 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
// Already doesn't have any niches
Scalar::Union { .. } => {}
};
match &mut st.abi {
Abi::Uninhabited => {}
Abi::Scalar(scalar) => hide_niches(scalar),
Abi::ScalarPair(a, b) => {
match &mut st.backend_repr {
BackendRepr::Uninhabited => {}
BackendRepr::Scalar(scalar) => hide_niches(scalar),
BackendRepr::ScalarPair(a, b) => {
hide_niches(a);
hide_niches(b);
}
Abi::Vector { element, count: _ } => hide_niches(element),
Abi::Aggregate { sized: _ } => {}
BackendRepr::Vector { element, count: _ } => hide_niches(element),
BackendRepr::Memory { sized: _ } => {}
}
st.largest_niche = None;
return Ok(st);
}

let (start, end) = scalar_valid_range;
match st.abi {
Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
match st.backend_repr {
BackendRepr::Scalar(ref mut scalar) | BackendRepr::ScalarPair(ref mut scalar, _) => {
// Enlarging validity ranges would result in missed
// optimizations, *not* wrongly assuming the inner
// value is valid. e.g. unions already enlarge validity ranges,
Expand Down Expand Up @@ -607,8 +607,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
}

// It can't be a Scalar or ScalarPair because the offset isn't 0.
if !layout.abi.is_uninhabited() {
layout.abi = Abi::Aggregate { sized: true };
if !layout.is_uninhabited() {
layout.backend_repr = BackendRepr::Memory { sized: true };
}
layout.size += this_offset;

Expand All @@ -627,26 +627,26 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
let same_size = size == variant_layouts[largest_variant_index].size;
let same_align = align == variant_layouts[largest_variant_index].align;

let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
Abi::Uninhabited
let abi = if variant_layouts.iter().all(|v| v.is_uninhabited()) {
BackendRepr::Uninhabited
} else if same_size && same_align && others_zst {
match variant_layouts[largest_variant_index].abi {
match variant_layouts[largest_variant_index].backend_repr {
// When the total alignment and size match, we can use the
// same ABI as the scalar variant with the reserved niche.
Abi::Scalar(_) => Abi::Scalar(niche_scalar),
Abi::ScalarPair(first, second) => {
BackendRepr::Scalar(_) => BackendRepr::Scalar(niche_scalar),
BackendRepr::ScalarPair(first, second) => {
// Only the niche is guaranteed to be initialised,
// so use union layouts for the other primitive.
if niche_offset == Size::ZERO {
Abi::ScalarPair(niche_scalar, second.to_union())
BackendRepr::ScalarPair(niche_scalar, second.to_union())
} else {
Abi::ScalarPair(first.to_union(), niche_scalar)
BackendRepr::ScalarPair(first.to_union(), niche_scalar)
}
}
_ => Abi::Aggregate { sized: true },
_ => BackendRepr::Memory { sized: true },
}
} else {
Abi::Aggregate { sized: true }
BackendRepr::Memory { sized: true }
};

let layout = LayoutData {
Expand All @@ -664,7 +664,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
offsets: [niche_offset].into(),
memory_index: [0].into(),
},
abi,
backend_repr: abi,
largest_niche,
size,
align,
Expand Down Expand Up @@ -833,14 +833,14 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
end: (max as u128 & tag_mask),
},
};
let mut abi = Abi::Aggregate { sized: true };
let mut abi = BackendRepr::Memory { sized: true };

if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
if layout_variants.iter().all(|v| v.is_uninhabited()) {
abi = BackendRepr::Uninhabited;
} else if tag.size(dl) == size {
// Make sure we only use scalar layout when the enum is entirely its
// own tag (i.e. it has no padding nor any non-ZST variant fields).
abi = Abi::Scalar(tag);
abi = BackendRepr::Scalar(tag);
} else {
// Try to use a ScalarPair for all tagged enums.
// That's possible only if we can find a common primitive type for all variants.
Expand All @@ -864,8 +864,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
break;
}
};
let prim = match field.abi {
Abi::Scalar(scalar) => {
let prim = match field.backend_repr {
BackendRepr::Scalar(scalar) => {
common_prim_initialized_in_all_variants &=
matches!(scalar, Scalar::Initialized { .. });
scalar.primitive()
Expand Down Expand Up @@ -934,20 +934,22 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.abi;
abi = pair.backend_repr;
}
}
}

// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
// variants to ensure they are consistent. This is because a downcast is
// semantically a NOP, and thus should not affect layout.
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
if matches!(abi, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
for variant in &mut layout_variants {
// We only do this for variants with fields; the others are not accessed anyway.
// Also do not overwrite any already existing "clever" ABIs.
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
variant.abi = abi;
if variant.fields.count() > 0
&& matches!(variant.backend_repr, BackendRepr::Memory { .. })
{
variant.backend_repr = abi;
// Also need to bump up the size and alignment, so that the entire value fits
// in here.
variant.size = cmp::max(variant.size, size);
Expand All @@ -970,7 +972,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
memory_index: [0].into(),
},
largest_niche,
abi,
backend_repr: abi,
align,
size,
max_repr_align,
Expand Down Expand Up @@ -1252,7 +1254,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
}
let mut layout_of_single_non_zst_field = None;
let sized = unsized_field.is_none();
let mut abi = Abi::Aggregate { sized };
let mut abi = BackendRepr::Memory { sized };

let optimize_abi = !repr.inhibit_newtype_abi_optimization();

Expand All @@ -1270,16 +1272,16 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
// Field fills the struct and it has a scalar or scalar pair ABI.
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
{
match field.abi {
match field.backend_repr {
// For plain scalars, or vectors of them, we can't unpack
// newtypes for `#[repr(C)]`, as that affects C ABIs.
Abi::Scalar(_) | Abi::Vector { .. } if optimize_abi => {
abi = field.abi;
BackendRepr::Scalar(_) | BackendRepr::Vector { .. } if optimize_abi => {
abi = field.backend_repr;
}
// But scalar pairs are Rust-specific and get
// treated as aggregates by C ABIs anyway.
Abi::ScalarPair(..) => {
abi = field.abi;
BackendRepr::ScalarPair(..) => {
abi = field.backend_repr;
}
_ => {}
}
Expand All @@ -1288,8 +1290,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {

// Two non-ZST fields, and they're both scalars.
(Some((i, a)), Some((j, b)), None) => {
match (a.abi, b.abi) {
(Abi::Scalar(a), Abi::Scalar(b)) => {
match (a.backend_repr, b.backend_repr) {
(BackendRepr::Scalar(a), BackendRepr::Scalar(b)) => {
// Order by the memory placement, not source order.
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
((i, a), (j, b))
Expand All @@ -1315,7 +1317,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
{
// We can use `ScalarPair` only when it matches our
// already computed layout (including `#[repr(C)]`).
abi = pair.abi;
abi = pair.backend_repr;
}
}
_ => {}
Expand All @@ -1325,8 +1327,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
_ => {}
}
}
if fields.iter().any(|f| f.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
if fields.iter().any(|f| f.is_uninhabited()) {
abi = BackendRepr::Uninhabited;
}

let unadjusted_abi_align = if repr.transparent() {
Expand All @@ -1344,7 +1346,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary { offsets, memory_index },
abi,
backend_repr: abi,
largest_niche,
align,
size,
Expand Down
12 changes: 6 additions & 6 deletions compiler/rustc_abi/src/layout/ty.rs
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,8 @@ impl<'a> Layout<'a> {
&self.0.0.variants
}

pub fn abi(self) -> Abi {
self.0.0.abi
pub fn backend_repr(self) -> BackendRepr {
self.0.0.backend_repr
}

pub fn largest_niche(self) -> Option<Niche> {
Expand Down Expand Up @@ -114,7 +114,7 @@ impl<'a> Layout<'a> {
pub fn is_pointer_like(self, data_layout: &TargetDataLayout) -> bool {
self.size() == data_layout.pointer_size
&& self.align().abi == data_layout.pointer_align.abi
&& matches!(self.abi(), Abi::Scalar(Scalar::Initialized { .. }))
&& matches!(self.backend_repr(), BackendRepr::Scalar(Scalar::Initialized { .. }))
}
}

Expand Down Expand Up @@ -196,9 +196,9 @@ impl<'a, Ty> TyAndLayout<'a, Ty> {
Ty: TyAbiInterface<'a, C>,
C: HasDataLayout,
{
match self.abi {
Abi::Scalar(scalar) => matches!(scalar.primitive(), Float(F32 | F64)),
Abi::Aggregate { .. } => {
match self.backend_repr {
BackendRepr::Scalar(scalar) => matches!(scalar.primitive(), Float(F32 | F64)),
BackendRepr::Memory { .. } => {
if self.fields.count() == 1 && self.fields.offset(0).bytes() == 0 {
self.field(cx, 0).is_single_fp_element(cx)
} else {
Expand Down
Loading
Loading