Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make RawVec::grow mostly non-generic. #72013

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 14 additions & 6 deletions src/liballoc/collections/vec_deque.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1354,7 +1354,9 @@ impl<T> VecDeque<T> {
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, value: T) {
self.grow_if_necessary();
if self.is_full() {
self.grow();
}

self.tail = self.wrap_sub(self.tail, 1);
let tail = self.tail;
Expand All @@ -1377,7 +1379,9 @@ impl<T> VecDeque<T> {
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, value: T) {
self.grow_if_necessary();
if self.is_full() {
self.grow();
}

let head = self.head;
self.head = self.wrap_add(self.head, 1);
Expand Down Expand Up @@ -1485,7 +1489,9 @@ impl<T> VecDeque<T> {
#[stable(feature = "deque_extras_15", since = "1.5.0")]
pub fn insert(&mut self, index: usize, value: T) {
assert!(index <= self.len(), "index out of bounds");
self.grow_if_necessary();
if self.is_full() {
self.grow();
}

// Move the least number of elements in the ring buffer and insert
// the given object
Expand Down Expand Up @@ -2003,11 +2009,13 @@ impl<T> VecDeque<T> {
}

// This may panic or abort
#[inline]
fn grow_if_necessary(&mut self) {
#[inline(never)]
fn grow(&mut self) {
if self.is_full() {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this check is duplicated now, isn't it?

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agree - a better change might have been to keep the inline function but have it call a never inlined grow_always instead. Should lead to the same code generation in the end.

let old_cap = self.cap();
self.buf.double();
// Double the buffer size.
self.buf.reserve_exact(old_cap, old_cap);
assert!(self.cap() == old_cap * 2);
unsafe {
self.handle_capacity_increase(old_cap);
}
Expand Down
224 changes: 81 additions & 143 deletions src/liballoc/raw_vec.rs
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#![unstable(feature = "raw_vec_internals", reason = "implementation detail", issue = "none")]
#![doc(hidden)]

use core::alloc::MemoryBlock;
use core::alloc::{LayoutErr, MemoryBlock};
use core::cmp;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::ops::Drop;
Expand Down Expand Up @@ -211,82 +211,6 @@ impl<T, A: AllocRef> RawVec<T, A> {
}
}

/// Doubles the size of the type's backing allocation. This is common enough
/// to want to do that it's easiest to just have a dedicated method. Slightly
/// more efficient logic can be provided for this than the general case.
///
/// This function is ideal for when pushing elements one-at-a-time because
/// you don't need to incur the costs of the more general computations
/// reserve needs to do to guard against overflow. You do however need to
/// manually check if your `len == capacity`.
///
/// # Panics
///
/// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
/// all `usize::MAX` slots in your imaginary buffer.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
///
/// # Aborts
///
/// Aborts on OOM
///
/// # Examples
///
/// ```
/// # #![feature(raw_vec_internals)]
/// # extern crate alloc;
/// # use std::ptr;
/// # use alloc::raw_vec::RawVec;
/// struct MyVec<T> {
/// buf: RawVec<T>,
/// len: usize,
/// }
///
/// impl<T> MyVec<T> {
/// pub fn push(&mut self, elem: T) {
/// if self.len == self.buf.capacity() { self.buf.double(); }
/// // double would have aborted or panicked if the len exceeded
/// // `isize::MAX` so this is safe to do unchecked now.
/// unsafe {
/// ptr::write(self.buf.ptr().add(self.len), elem);
/// }
/// self.len += 1;
/// }
/// }
/// # fn main() {
/// # let mut vec = MyVec { buf: RawVec::new(), len: 0 };
/// # vec.push(1);
/// # }
/// ```
#[inline(never)]
#[cold]
pub fn double(&mut self) {
match self.grow(Double, MayMove, Uninitialized) {
Err(CapacityOverflow) => capacity_overflow(),
Err(AllocError { layout, .. }) => handle_alloc_error(layout),
Ok(()) => { /* yay */ }
}
}

/// Attempts to double the size of the type's backing allocation in place. This is common
/// enough to want to do that it's easiest to just have a dedicated method. Slightly
/// more efficient logic can be provided for this than the general case.
///
/// Returns `true` if the reallocation attempt has succeeded.
///
/// # Panics
///
/// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
/// all `usize::MAX` slots in your imaginary buffer.
/// * Panics on 32-bit platforms if the requested capacity exceeds
/// `isize::MAX` bytes.
#[inline(never)]
#[cold]
pub fn double_in_place(&mut self) -> bool {
self.grow(Double, InPlace, Uninitialized).is_ok()
}

/// Ensures that the buffer contains at least enough space to hold
/// `used_capacity + needed_extra_capacity` elements. If it doesn't already have
/// enough capacity, will reallocate enough space plus comfortable slack
Expand Down Expand Up @@ -354,7 +278,7 @@ impl<T, A: AllocRef> RawVec<T, A> {
needed_extra_capacity: usize,
) -> Result<(), TryReserveError> {
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Amortized { used_capacity, needed_extra_capacity }, MayMove, Uninitialized)
self.grow_amortized(used_capacity, needed_extra_capacity, MayMove)
} else {
Ok(())
}
Expand All @@ -381,8 +305,7 @@ impl<T, A: AllocRef> RawVec<T, A> {
// This is more readable than putting this in one line:
// `!self.needs_to_grow(...) || self.grow(...).is_ok()`
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Amortized { used_capacity, needed_extra_capacity }, InPlace, Uninitialized)
.is_ok()
self.grow_amortized(used_capacity, needed_extra_capacity, InPlace).is_ok()
} else {
true
}
Expand Down Expand Up @@ -423,7 +346,7 @@ impl<T, A: AllocRef> RawVec<T, A> {
needed_extra_capacity: usize,
) -> Result<(), TryReserveError> {
if self.needs_to_grow(used_capacity, needed_extra_capacity) {
self.grow(Exact { used_capacity, needed_extra_capacity }, MayMove, Uninitialized)
self.grow_exact(used_capacity, needed_extra_capacity)
} else {
Ok(())
}
Expand All @@ -448,14 +371,6 @@ impl<T, A: AllocRef> RawVec<T, A> {
}
}

#[derive(Copy, Clone)]
enum Strategy {
Double,
Amortized { used_capacity: usize, needed_extra_capacity: usize },
Exact { used_capacity: usize, needed_extra_capacity: usize },
}
use Strategy::*;

impl<T, A: AllocRef> RawVec<T, A> {
/// Returns if the buffer needs to grow to fulfill the needed extra capacity.
/// Mainly used to make inlining reserve-calls possible without inlining `grow`.
Expand All @@ -473,68 +388,59 @@ impl<T, A: AllocRef> RawVec<T, A> {
self.cap = Self::capacity_from_bytes(memory.size);
}

/// Single method to handle all possibilities of growing the buffer.
fn grow(
// This method is usually instantiated many times. So we want it to be as
// small as possible, to improve compile times. But we also want as much of
// its contents to be statically computable as possible, to make the
// generated code run faster. Therefore, this method is carefully written
// so that all of the code that depends on `T` is within it, while as much
// of the code that doesn't depend on `T` as possible is in functions that
// are non-generic over `T`.
fn grow_amortized(
&mut self,
strategy: Strategy,
used_capacity: usize,
needed_extra_capacity: usize,
placement: ReallocPlacement,
init: AllocInit,
) -> Result<(), TryReserveError> {
let elem_size = mem::size_of::<T>();
if elem_size == 0 {
if mem::size_of::<T>() == 0 {
// Since we return a capacity of `usize::MAX` when `elem_size` is
// 0, getting to here necessarily means the `RawVec` is overfull.
return Err(CapacityOverflow);
}
let new_layout = match strategy {
Double => unsafe {
// Since we guarantee that we never allocate more than `isize::MAX` bytes,
// `elem_size * self.cap <= isize::MAX` as a precondition, so this can't overflow.
// Additionally the alignment will never be too large as to "not be satisfiable",
// so `Layout::from_size_align` will always return `Some`.
//
// TL;DR, we bypass runtime checks due to dynamic assertions in this module,
// allowing us to use `from_size_align_unchecked`.
let cap = if self.cap == 0 {
// Skip to 4 because tiny `Vec`'s are dumb; but not if that would cause overflow.
if elem_size > usize::MAX / 8 { 1 } else { 4 }
} else {
self.cap * 2
};
Layout::from_size_align_unchecked(cap * elem_size, mem::align_of::<T>())
},
Amortized { used_capacity, needed_extra_capacity } => {
// Nothing we can really do about these checks, sadly.
let required_cap =
used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
// Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
let double_cap = self.cap * 2;
// `double_cap` guarantees exponential growth.
let cap = cmp::max(double_cap, required_cap);
Layout::array::<T>(cap).map_err(|_| CapacityOverflow)?
}
Exact { used_capacity, needed_extra_capacity } => {
let cap =
used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
Layout::array::<T>(cap).map_err(|_| CapacityOverflow)?
}
};
alloc_guard(new_layout.size())?;

let memory = if let Some((ptr, old_layout)) = self.current_memory() {
debug_assert_eq!(old_layout.align(), new_layout.align());
unsafe {
self.alloc
.grow(ptr, old_layout, new_layout.size(), placement, init)
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
}
} else {
match placement {
MayMove => self.alloc.alloc(new_layout, init),
InPlace => Err(AllocErr),
}
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
};
// Nothing we can really do about these checks, sadly.
let required_cap =
used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
// Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
let double_cap = self.cap * 2;
// `double_cap` guarantees exponential growth.
let cap = cmp::max(double_cap, required_cap);
let new_layout = Layout::array::<T>(cap);

// `finish_grow` is non-generic over `T`.
let memory = finish_grow(new_layout, placement, self.current_memory(), &mut self.alloc)?;
self.set_memory(memory);
Ok(())
}

// The constraints on this method are much the same as those on
// `grow_amortized`, but this method is usually instantiated less often so
// it's less critical.
fn grow_exact(
&mut self,
used_capacity: usize,
needed_extra_capacity: usize,
) -> Result<(), TryReserveError> {
if mem::size_of::<T>() == 0 {
// Since we return a capacity of `usize::MAX` when the type size is
// 0, getting to here necessarily means the `RawVec` is overfull.
return Err(CapacityOverflow);
}

let cap = used_capacity.checked_add(needed_extra_capacity).ok_or(CapacityOverflow)?;
let new_layout = Layout::array::<T>(cap);

// `finish_grow` is non-generic over `T`.
let memory = finish_grow(new_layout, MayMove, self.current_memory(), &mut self.alloc)?;
self.set_memory(memory);
Ok(())
}
Expand Down Expand Up @@ -562,6 +468,38 @@ impl<T, A: AllocRef> RawVec<T, A> {
}
}

// This function is outside `RawVec` to minimize compile times. See the comment
// above `RawVec::grow_amortized` for details. (The `A` parameter isn't
// significant, because the number of different `A` types seen in practice is
// much smaller than the number of `T` types.)
fn finish_grow<A>(
new_layout: Result<Layout, LayoutErr>,
placement: ReallocPlacement,
current_memory: Option<(NonNull<u8>, Layout)>,
alloc: &mut A,
) -> Result<MemoryBlock, TryReserveError>
where
A: AllocRef,
{
// Check for the error here to minimize the size of `RawVec::grow_*`.
let new_layout = new_layout.map_err(|_| CapacityOverflow)?;

alloc_guard(new_layout.size())?;

let memory = if let Some((ptr, old_layout)) = current_memory {
debug_assert_eq!(old_layout.align(), new_layout.align());
unsafe { alloc.grow(ptr, old_layout, new_layout.size(), placement, Uninitialized) }
} else {
match placement {
MayMove => alloc.alloc(new_layout, Uninitialized),
InPlace => Err(AllocErr),
}
}
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?;

Ok(memory)
}

impl<T> RawVec<T, Global> {
/// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
///
Expand Down