Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

std: directly use pthread in UNIX parker implementation #96393

Merged
merged 3 commits into from
Apr 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions library/std/src/sys/unix/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ pub mod stdio;
pub mod thread;
pub mod thread_local_dtor;
pub mod thread_local_key;
pub mod thread_parker;
pub mod time;

#[cfg(target_os = "espidf")]
Expand Down
265 changes: 265 additions & 0 deletions library/std/src/sys/unix/thread_parker.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,265 @@
//! Thread parking without `futex` using the `pthread` synchronization primitives.

#![cfg(not(any(
target_os = "linux",
target_os = "android",
all(target_os = "emscripten", target_feature = "atomics")
)))]

use crate::cell::UnsafeCell;
use crate::marker::PhantomPinned;
use crate::pin::Pin;
use crate::ptr::addr_of_mut;
use crate::sync::atomic::AtomicUsize;
use crate::sync::atomic::Ordering::SeqCst;
use crate::time::Duration;

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

unsafe fn lock(lock: *mut libc::pthread_mutex_t) {
let r = libc::pthread_mutex_lock(lock);
debug_assert_eq!(r, 0);
}

unsafe fn unlock(lock: *mut libc::pthread_mutex_t) {
let r = libc::pthread_mutex_unlock(lock);
debug_assert_eq!(r, 0);
}

unsafe fn notify_one(cond: *mut libc::pthread_cond_t) {
let r = libc::pthread_cond_signal(cond);
debug_assert_eq!(r, 0);
}

unsafe fn wait(cond: *mut libc::pthread_cond_t, lock: *mut libc::pthread_mutex_t) {
let r = libc::pthread_cond_wait(cond, lock);
debug_assert_eq!(r, 0);
}

const TIMESPEC_MAX: libc::timespec =
libc::timespec { tv_sec: <libc::time_t>::MAX, tv_nsec: 1_000_000_000 - 1 };

unsafe fn wait_timeout(
cond: *mut libc::pthread_cond_t,
lock: *mut libc::pthread_mutex_t,
dur: Duration,
) {
// Use the system clock on systems that do not support pthread_condattr_setclock.
// This unfortunately results in problems when the system time changes.
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "espidf"))]
let (now, dur) = {
use super::time::SystemTime;
use crate::cmp::min;

// OSX implementation of `pthread_cond_timedwait` is buggy
// with super long durations. When duration is greater than
// 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
// in macOS Sierra return error 316.
//
// This program demonstrates the issue:
// https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
//
// To work around this issue, and possible bugs of other OSes, timeout
// is clamped to 1000 years, which is allowable per the API of `park_timeout`
// because of spurious wakeups.
let dur = min(dur, Duration::from_secs(1000 * 365 * 86400));
let now = SystemTime::now().t;
(now, dur)
};
// Use the monotonic clock on other systems.
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "espidf")))]
let (now, dur) = {
use super::time::Timespec;

(Timespec::now(libc::CLOCK_MONOTONIC), dur)
};

let timeout = now.checked_add_duration(&dur).map(|t| t.t).unwrap_or(TIMESPEC_MAX);
let r = libc::pthread_cond_timedwait(cond, lock, &timeout);
debug_assert!(r == libc::ETIMEDOUT || r == 0);
}

pub struct Parker {
state: AtomicUsize,
lock: UnsafeCell<libc::pthread_mutex_t>,
cvar: UnsafeCell<libc::pthread_cond_t>,
// The `pthread` primitives require a stable address, so make this struct `!Unpin`.
_pinned: PhantomPinned,
}

impl Parker {
/// Construct the UNIX parker in-place.
///
/// # Safety
/// The constructed parker must never be moved.
pub unsafe fn new(parker: *mut Parker) {
// Use the default mutex implementation to allow for simpler initialization.
// This could lead to undefined behaviour when deadlocking. This is avoided
// by not deadlocking. Note in particular the unlocking operation before any
// panic, as code after the panic could try to park again.
addr_of_mut!((*parker).state).write(AtomicUsize::new(EMPTY));
addr_of_mut!((*parker).lock).write(UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER));

cfg_if::cfg_if! {
if #[cfg(any(
target_os = "macos",
target_os = "ios",
target_os = "l4re",
target_os = "android",
target_os = "redox"
))] {
addr_of_mut!((*parker).cvar).write(UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER));
} else if #[cfg(target_os = "espidf")] {
let r = libc::pthread_cond_init(addr_of_mut!((*parker).cvar).cast(), crate::ptr::null());
assert_eq!(r, 0);
} else {
use crate::mem::MaybeUninit;
let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
let r = libc::pthread_condattr_init(attr.as_mut_ptr());
assert_eq!(r, 0);
let r = libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC);
joboet marked this conversation as resolved.
Show resolved Hide resolved
assert_eq!(r, 0);
let r = libc::pthread_cond_init(addr_of_mut!((*parker).cvar).cast(), attr.as_ptr());
assert_eq!(r, 0);
let r = libc::pthread_condattr_destroy(attr.as_mut_ptr());
assert_eq!(r, 0);
}
}
}

// This implementation doesn't require `unsafe`, but other implementations
// may assume this is only called by the thread that owns the Parker.
pub unsafe fn park(self: Pin<&Self>) {
// If we were previously notified then we consume this notification and
// return quickly.
if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
return;
}

// Otherwise we need to coordinate going to sleep
lock(self.lock.get());
match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
Ok(_) => {}
Err(NOTIFIED) => {
// We must read here, even though we know it will be `NOTIFIED`.
// This is because `unpark` may have been called again since we read
// `NOTIFIED` in the `compare_exchange` above. We must perform an
// acquire operation that synchronizes with that `unpark` to observe
// any writes it made before the call to unpark. To do that we must
// read from the write it made to `state`.
let old = self.state.swap(EMPTY, SeqCst);

unlock(self.lock.get());

assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
return;
} // should consume this notification, so prohibit spurious wakeups in next park.
Err(_) => {
unlock(self.lock.get());

panic!("inconsistent park state")
}
}

loop {
wait(self.cvar.get(), self.lock.get());

match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) {
Ok(_) => break, // got a notification
Err(_) => {} // spurious wakeup, go back to sleep
}
}

unlock(self.lock.get());
}

// This implementation doesn't require `unsafe`, but other implementations
// may assume this is only called by the thread that owns the Parker. Use
// `Pin` to guarantee a stable address for the mutex and condition variable.
pub unsafe fn park_timeout(self: Pin<&Self>, dur: Duration) {
joboet marked this conversation as resolved.
Show resolved Hide resolved
// Like `park` above we have a fast path for an already-notified thread, and
// afterwards we start coordinating for a sleep.
// return quickly.
if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
return;
}

lock(self.lock.get());
match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
Ok(_) => {}
Err(NOTIFIED) => {
// We must read again here, see `park`.
let old = self.state.swap(EMPTY, SeqCst);
unlock(self.lock.get());

assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
return;
} // should consume this notification, so prohibit spurious wakeups in next park.
Err(_) => {
unlock(self.lock.get());
panic!("inconsistent park_timeout state")
}
}

// Wait with a timeout, and if we spuriously wake up or otherwise wake up
// from a notification we just want to unconditionally set the state back to
// empty, either consuming a notification or un-flagging ourselves as
// parked.
wait_timeout(self.cvar.get(), self.lock.get(), dur);

match self.state.swap(EMPTY, SeqCst) {
NOTIFIED => unlock(self.lock.get()), // got a notification, hurray!
PARKED => unlock(self.lock.get()), // no notification, alas
n => {
unlock(self.lock.get());
panic!("inconsistent park_timeout state: {n}")
}
}
}

pub fn unpark(self: Pin<&Self>) {
// To ensure the unparked thread will observe any writes we made
// before this call, we must perform a release operation that `park`
// can synchronize with. To do that we must write `NOTIFIED` even if
// `state` is already `NOTIFIED`. That is why this must be a swap
// rather than a compare-and-swap that returns if it reads `NOTIFIED`
// on failure.
match self.state.swap(NOTIFIED, SeqCst) {
EMPTY => return, // no one was waiting
NOTIFIED => return, // already unparked
PARKED => {} // gotta go wake someone up
_ => panic!("inconsistent state in unpark"),
}

// There is a period between when the parked thread sets `state` to
// `PARKED` (or last checked `state` in the case of a spurious wake
// up) and when it actually waits on `cvar`. If we were to notify
// during this period it would be ignored and then when the parked
// thread went to sleep it would never wake up. Fortunately, it has
// `lock` locked at this stage so we can acquire `lock` to wait until
// it is ready to receive the notification.
//
// Releasing `lock` before the call to `notify_one` means that when the
// parked thread wakes it doesn't get woken only to have to wait for us
// to release `lock`.
unsafe {
lock(self.lock.get());
unlock(self.lock.get());
notify_one(self.cvar.get());
}
}
}

impl Drop for Parker {
fn drop(&mut self) {
unsafe {
libc::pthread_cond_destroy(self.cvar.get_mut());
libc::pthread_mutex_destroy(self.lock.get_mut());
}
}
}

unsafe impl Sync for Parker {}
unsafe impl Send for Parker {}
4 changes: 2 additions & 2 deletions library/std/src/sys/unix/time.rs
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ mod inner {

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SystemTime {
t: Timespec,
pub(in crate::sys::unix) t: Timespec,
}

pub const UNIX_EPOCH: SystemTime = SystemTime { t: Timespec::zero() };
Expand Down Expand Up @@ -279,7 +279,7 @@ mod inner {

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SystemTime {
t: Timespec,
pub(in crate::sys::unix) t: Timespec,
}

pub const UNIX_EPOCH: SystemTime = SystemTime { t: Timespec::zero() };
Expand Down
20 changes: 13 additions & 7 deletions library/std/src/sys/windows/thread_parker.rs
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@
// [4]: Windows Internals, Part 1, ISBN 9780735671300

use crate::convert::TryFrom;
use crate::pin::Pin;
use crate::ptr;
use crate::sync::atomic::{
AtomicI8, AtomicPtr,
Expand Down Expand Up @@ -95,13 +96,16 @@ const NOTIFIED: i8 = 1;
// Ordering::Release when writing NOTIFIED (the 'token') in unpark(), and using
// Ordering::Acquire when reading this state in park() after waking up.
impl Parker {
pub fn new() -> Self {
Self { state: AtomicI8::new(EMPTY) }
/// Construct the Windows parker. The UNIX parker implementation
/// requires this to happen in-place.
pub unsafe fn new(parker: *mut Parker) {
parker.write(Self { state: AtomicI8::new(EMPTY) });
}

// Assumes this is only called by the thread that owns the Parker,
// which means that `self.state != PARKED`.
pub unsafe fn park(&self) {
// which means that `self.state != PARKED`. This implementation doesn't require `Pin`,
// but other implementations do.
pub unsafe fn park(self: Pin<&Self>) {
// Change NOTIFIED=>EMPTY or EMPTY=>PARKED, and directly return in the
// first case.
if self.state.fetch_sub(1, Acquire) == NOTIFIED {
Expand Down Expand Up @@ -132,8 +136,9 @@ impl Parker {
}

// Assumes this is only called by the thread that owns the Parker,
// which means that `self.state != PARKED`.
pub unsafe fn park_timeout(&self, timeout: Duration) {
// which means that `self.state != PARKED`. This implementation doesn't require `Pin`,
// but other implementations do.
pub unsafe fn park_timeout(self: Pin<&Self>, timeout: Duration) {
// Change NOTIFIED=>EMPTY or EMPTY=>PARKED, and directly return in the
// first case.
if self.state.fetch_sub(1, Acquire) == NOTIFIED {
Expand Down Expand Up @@ -184,7 +189,8 @@ impl Parker {
}
}

pub fn unpark(&self) {
// This implementation doesn't require `Pin`, but other implementations do.
pub fn unpark(self: Pin<&Self>) {
// Change PARKED=>NOTIFIED, EMPTY=>NOTIFIED, or NOTIFIED=>NOTIFIED, and
// wake the thread in the first case.
//
Expand Down
18 changes: 11 additions & 7 deletions library/std/src/sys_common/thread_parker/futex.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
use crate::pin::Pin;
use crate::sync::atomic::AtomicU32;
use crate::sync::atomic::Ordering::{Acquire, Release};
use crate::sys::futex::{futex_wait, futex_wake};
Expand Down Expand Up @@ -32,14 +33,15 @@ pub struct Parker {
// Ordering::Release when writing NOTIFIED (the 'token') in unpark(), and using
// Ordering::Acquire when checking for this state in park().
impl Parker {
#[inline]
pub const fn new() -> Self {
Parker { state: AtomicU32::new(EMPTY) }
/// Construct the futex parker. The UNIX parker implementation
/// requires this to happen in-place.
pub unsafe fn new(parker: *mut Parker) {
parker.write(Self { state: AtomicU32::new(EMPTY) });
}

// Assumes this is only called by the thread that owns the Parker,
// which means that `self.state != PARKED`.
pub unsafe fn park(&self) {
pub unsafe fn park(self: Pin<&Self>) {
// Change NOTIFIED=>EMPTY or EMPTY=>PARKED, and directly return in the
// first case.
if self.state.fetch_sub(1, Acquire) == NOTIFIED {
Expand All @@ -58,8 +60,9 @@ impl Parker {
}

// Assumes this is only called by the thread that owns the Parker,
// which means that `self.state != PARKED`.
pub unsafe fn park_timeout(&self, timeout: Duration) {
// which means that `self.state != PARKED`. This implementation doesn't
// require `Pin`, but other implementations do.
pub unsafe fn park_timeout(self: Pin<&Self>, timeout: Duration) {
// Change NOTIFIED=>EMPTY or EMPTY=>PARKED, and directly return in the
// first case.
if self.state.fetch_sub(1, Acquire) == NOTIFIED {
Expand All @@ -78,8 +81,9 @@ impl Parker {
}
}

// This implementation doesn't require `Pin`, but other implementations do.
#[inline]
pub fn unpark(&self) {
pub fn unpark(self: Pin<&Self>) {
// Change PARKED=>NOTIFIED, EMPTY=>NOTIFIED, or NOTIFIED=>NOTIFIED, and
// wake the thread in the first case.
//
Expand Down
Loading