-
Notifications
You must be signed in to change notification settings - Fork 432
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #485 from rohitjoshi/master
Support for Dirichlet distribution
- Loading branch information
Showing
2 changed files
with
145 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT | ||
// file at the top-level directory of this distribution and at | ||
// https://rust-lang.org/COPYRIGHT. | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license | ||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your | ||
// option. This file may not be copied, modified, or distributed | ||
// except according to those terms. | ||
|
||
//! The dirichlet distribution. | ||
|
||
use Rng; | ||
use distributions::Distribution; | ||
use distributions::gamma::Gamma; | ||
|
||
/// The dirichelet distribution `Dirichlet(alpha)`. | ||
/// | ||
/// The Dirichlet distribution is a family of continuous multivariate probability distributions parameterized by | ||
/// a vector alpha of positive reals. https://en.wikipedia.org/wiki/Dirichlet_distribution | ||
/// It is a multivariate generalization of the beta distribution. | ||
/// | ||
/// # Example | ||
/// | ||
/// ``` | ||
/// use rand::prelude::*; | ||
/// use rand::distributions::Dirichlet; | ||
/// | ||
/// let dirichlet = Dirichlet::new(vec![1.0, 2.0, 3.0]); | ||
/// let samples = dirichlet.sample(&mut rand::thread_rng()); | ||
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples); | ||
/// ``` | ||
|
||
#[derive(Clone, Debug)] | ||
pub struct Dirichlet { | ||
/// Concentration parameters (alpha) | ||
alpha: Vec<f64>, | ||
} | ||
|
||
impl Dirichlet { | ||
/// Construct a new `Dirichlet` with the given alpha parameter `alpha`. | ||
/// | ||
/// # Panics | ||
/// - if `alpha.len() < 2` | ||
/// | ||
#[inline] | ||
pub fn new<V: Into<Vec<f64>>>(alpha: V) -> Dirichlet { | ||
let a = alpha.into(); | ||
assert!(a.len() > 1); | ||
for i in 0..a.len() { | ||
assert!(a[i] > 0.0); | ||
} | ||
|
||
Dirichlet { alpha: a } | ||
} | ||
|
||
/// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`. | ||
/// | ||
/// # Panics | ||
/// - if `alpha <= 0.0` | ||
/// - if `size < 2` | ||
/// | ||
#[inline] | ||
pub fn new_with_param(alpha: f64, size: usize) -> Dirichlet { | ||
assert!(alpha > 0.0); | ||
assert!(size > 1); | ||
Dirichlet { | ||
alpha: vec![alpha; size], | ||
} | ||
} | ||
} | ||
|
||
impl Distribution<Vec<f64>> for Dirichlet { | ||
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64> { | ||
let n = self.alpha.len(); | ||
let mut samples = vec![0.0f64; n]; | ||
let mut sum = 0.0f64; | ||
|
||
for i in 0..n { | ||
let g = Gamma::new(self.alpha[i], 1.0); | ||
samples[i] = g.sample(rng); | ||
sum += samples[i]; | ||
} | ||
let invacc = 1.0 / sum; | ||
for i in 0..n { | ||
samples[i] *= invacc; | ||
} | ||
samples | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use super::Dirichlet; | ||
use distributions::Distribution; | ||
|
||
#[test] | ||
fn test_dirichlet() { | ||
let d = Dirichlet::new(vec![1.0, 2.0, 3.0]); | ||
let mut rng = ::test::rng(221); | ||
let samples = d.sample(&mut rng); | ||
let _: Vec<f64> = samples | ||
.into_iter() | ||
.map(|x| { | ||
assert!(x > 0.0); | ||
x | ||
}) | ||
.collect(); | ||
} | ||
|
||
#[test] | ||
fn test_dirichlet_with_param() { | ||
let alpha = 0.5f64; | ||
let size = 2; | ||
let d = Dirichlet::new_with_param(alpha, size); | ||
let mut rng = ::test::rng(221); | ||
let samples = d.sample(&mut rng); | ||
let _: Vec<f64> = samples | ||
.into_iter() | ||
.map(|x| { | ||
assert!(x > 0.0); | ||
x | ||
}) | ||
.collect(); | ||
} | ||
|
||
#[test] | ||
#[should_panic] | ||
fn test_dirichlet_invalid_length() { | ||
Dirichlet::new_with_param(0.5f64, 1); | ||
} | ||
|
||
#[test] | ||
#[should_panic] | ||
fn test_dirichlet_invalid_alpha() { | ||
Dirichlet::new_with_param(0.0f64, 2); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters