-
Notifications
You must be signed in to change notification settings - Fork 1
/
bert_snli.py
282 lines (240 loc) · 10.9 KB
/
bert_snli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
Train the ESIM model on the preprocessed SNLI dataset.
"""
# Aurelien Coet, 2018.
from utils.utils_transformer import train, validate
from vaa.model_transformer import ESIM
import torch.nn as nn
import matplotlib.pyplot as plt
import os
import sys
import argparse
import json
import numpy as np
import pickle
import torch
import matplotlib
matplotlib.use('Agg')
def transform_batch_data(data, batch_size=64, shuffle=True):
data_batch = dict()
data_batch['premises'] = dict()
data_batch['hypotheses'] = dict()
data_batch['labels'] = dict()
index = np.arange(len(data['labels']))
if shuffle:
np.random.shuffle(index)
idx = -1
for i in range(len(index)):
if i % batch_size == 0:
idx += 1
data_batch['premises'][idx] = []
data_batch['hypotheses'][idx] = []
data_batch['labels'][idx] = []
data_batch['premises'][idx].append(data['premises'][index[i]])
data_batch['hypotheses'][idx].append(data['hypotheses'][index[i]])
data_batch['labels'][idx].append(int(data['labels'][index[i]]))
return data_batch
def main(train_file,
valid_file,
test_file,
target_dir,
embedding_size=512,
hidden_size=512,
dropout=0.5,
num_classes=3,
epochs=64,
batch_size=32,
lr=0.0004,
patience=5,
max_grad_norm=10.0,
checkpoint=None):
"""
Train the ESIM model on the Quora dataset.
Args:
train_file: A path to some preprocessed data that must be used
to train the model.
valid_file: A path to some preprocessed data that must be used
to validate the model.
embeddings_file: A path to some preprocessed word embeddings that
must be used to initialise the model.
target_dir: The path to a directory where the trained model must
be saved.
hidden_size: The size of the hidden layers in the model. Defaults
to 300.
dropout: The dropout rate to use in the model. Defaults to 0.5.
num_classes: The number of classes in the output of the model.
Defaults to 3.
epochs: The maximum number of epochs for training. Defaults to 64.
batch_size: The size of the batches for training. Defaults to 32.
lr: The learning rate for the optimizer. Defaults to 0.0004.
patience: The patience to use for early stopping. Defaults to 5.
checkpoint: A checkpoint from which to continue training. If None,
training starts from scratch. Defaults to None.
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(20 * "=", " Preparing for training ", 20 * "=")
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# -------------------- Data loading ------------------- #
print("\t* Loading training data...")
with open(train_file, "rb") as pkl:
train_data = pickle.load(pkl)
print("\t* Loading validation data...")
with open(valid_file, "rb") as pkl:
valid_data = pickle.load(pkl)
valid_dataloader = transform_batch_data(valid_data, batch_size=batch_size, shuffle=False)
print("\t* Loading test data...")
with open(test_file, "rb") as pkl:
test_data = pickle.load(pkl)
test_dataloader = transform_batch_data(test_data, batch_size=batch_size, shuffle=False)
# -------------------- Model definition ------------------- #
print("\t* Building model...")
model = ESIM(embedding_size,
hidden_size,
dropout=dropout,
num_classes=num_classes,
device=device).to(device)
# -------------------- Preparation for training ------------------- #
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode="max",
factor=0.5,
patience=0)
best_score = 0.0
start_epoch = 1
# Data for loss curves plot.
epochs_count = []
train_losses = []
valid_losses = []
# Continuing training from a checkpoint if one was given as argument.
if checkpoint:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint["epoch"] + 1
best_score = checkpoint["best_score"]
print("\t* Training will continue on existing model from epoch {}..."
.format(start_epoch))
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
epochs_count = checkpoint["epochs_count"]
train_losses = checkpoint["train_losses"]
valid_losses = checkpoint["valid_losses"]
# Compute loss and accuracy before starting (or resuming) training.
# _, valid_loss, valid_accuracy = validate(model,
# valid_dataloader,
# criterion)
# print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%"
# .format(valid_loss, (valid_accuracy*100)))
#
# _, test_loss, test_accuracy = validate(model,
# test_dataloader,
# criterion)
# print("\t* test loss before training: {:.4f}, accuracy: {:.4f}%"
# .format(test_loss, (test_accuracy*100)))
# -------------------- Training epochs ------------------- #
print("\n",
20 * "=",
"Training ESIM model on device: {}".format(device),
20 * "=")
patience_counter = 0
for epoch in range(start_epoch, epochs+1):
train_dataloader = transform_batch_data(train_data, batch_size=batch_size, shuffle=True)
epochs_count.append(epoch)
print("* Training epoch {}:".format(epoch))
epoch_time, epoch_loss, epoch_accuracy = train(model,
train_dataloader,
optimizer,
criterion,
epoch,
max_grad_norm)
train_losses.append(epoch_loss)
print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%"
.format(epoch_time, epoch_loss, (epoch_accuracy*100)))
print("* Validation for epoch {}:".format(epoch))
epoch_time, epoch_loss, epoch_accuracy = validate(model,
valid_dataloader,
criterion)
valid_losses.append(epoch_loss)
print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
.format(epoch_time, epoch_loss, (epoch_accuracy*100)))
print("* Test for epoch {}:".format(epoch))
epoch_time, epoch_loss, test_accuracy = validate(model,
test_dataloader,
criterion)
print("-> Test. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
.format(epoch_time, epoch_loss, (test_accuracy*100)))
sys.stdout.flush() #刷新输出
# Update the optimizer's learning rate with the scheduler.
scheduler.step(epoch_accuracy)
# Early stopping on validation accuracy.
if epoch_accuracy < best_score:
patience_counter += 1
else:
best_score = epoch_accuracy
patience_counter = 0
# Save the best model. The optimizer is not saved to avoid having
# a checkpoint file that is too heavy to be shared. To resume
# training from the best model, use the 'esim_*.pth.tar'
# checkpoints instead.
torch.save({"epoch": epoch,
"model": model.state_dict(),
"best_score": best_score,
"optimizer": optimizer.state_dict(),
"epochs_count": epochs_count,
"train_losses": train_losses,
"valid_losses": valid_losses},
os.path.join(target_dir, "best.pth.tar"))
# Save the model at each epoch.
torch.save({"epoch": epoch,
"model": model.state_dict(),
"best_score": best_score,
"optimizer": optimizer.state_dict(),
"epochs_count": epochs_count,
"train_losses": train_losses,
"valid_losses": valid_losses},
os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))
if patience_counter >= patience:
print("-> Early stopping: patience limit reached, stopping...")
break
# Plotting of the loss curves for the train and validation sets.
fig = plt.figure()
plt.plot(epochs_count, train_losses, "-r")
plt.plot(epochs_count, valid_losses, "-b")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.legend(["Training loss", "Validation loss"])
plt.title("Cross entropy loss")
fig.savefig('quora_loss.png')
if __name__ == "__main__":
default_config = "../../config/training/snli_training_bert.json"
parser = argparse.ArgumentParser(
description="Train the ESIM model on snli")
parser.add_argument("--config",
default=default_config,
help="Path to a json configuration file")
script_dir = os.path.dirname(os.path.realpath(__file__))
script_dir = script_dir + '/scripts/training'
parser.add_argument("--checkpoint",
default=None,#os.path.dirname(os.path.realpath(__file__)) + '/data/checkpoints/SNLI/bert/' +"esim_{}.pth.tar".format(2),
help="Path to a checkpoint file to resume training")
args = parser.parse_args()
if args.config == default_config:
config_path = os.path.join(script_dir, args.config)
else:
config_path = args.config
with open(os.path.normpath(config_path), 'r') as config_file:
config = json.load(config_file)
main(os.path.normpath(os.path.join(script_dir, config["train_data"])),
os.path.normpath(os.path.join(script_dir, config["valid_data"])),
os.path.normpath(os.path.join(script_dir, config["test_data"])),
os.path.normpath(os.path.join(script_dir, config["target_dir"])),
config["embedding_size"],
config["hidden_size"],
config["dropout"],
config["num_classes"],
config["epochs"],
config["batch_size"],
config["lr"],
config["patience"],
config["max_gradient_norm"],
args.checkpoint)