Skip to content

Commit

Permalink
Allowing an arbitrary skew-symmetric matrix as input to determine the…
Browse files Browse the repository at this point in the history
… multiplication.
  • Loading branch information
tscrim committed Aug 27, 2022
1 parent d7f05ce commit 49129ea
Showing 1 changed file with 93 additions and 18 deletions.
111 changes: 93 additions & 18 deletions src/sage/algebras/q_commuting_polynomials.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,24 +19,31 @@
from sage.misc.cachefunc import cached_method
from sage.sets.family import Family
from sage.rings.infinity import infinity
from sage.rings.integer_ring import ZZ
from sage.categories.algebras import Algebras
from sage.combinat.free_module import CombinatorialFreeModule
from sage.monoids.free_abelian_monoid import FreeAbelianMonoid, FreeAbelianMonoid_class
from sage.monoids.free_abelian_monoid import FreeAbelianMonoid
from sage.matrix.constructor import matrix
from sage.structure.element import Matrix

class qCommutingPolynomials(CombinatorialFreeModule):
r"""
The algebra of `q`-commuting polynomials.
Let `R` be a commutative ring, and fix an element `q \in R`. We say two
distinct variables `x` and `y` `q`-*commute* if they satisfy the relation
Let `R` be a commutative ring, and fix an element `q \in R`. Let
B = (B_{xy})_{x,y \in I}` be a skew-symmetric bilinear form with
index set `I`. Let `R[I]_{q,B}` denote the polynomial ring in the variables
`I` such that we have the `q`-*commuting* relation for `x, y \in I`:
.. MATH::
x y = q \cdot y x.
y x = q^{B_{xy}} \cdot x y.
These form a graded `R`-algebra with a natural basis given by monomials
written in increasing order. These then satisfy a `q`-analog of the
classical binomial coefficient theorem:
This is a graded `R`-algebra with a natural basis given by monomials
written in increasing order with respect to some total order on `I`.
When `B_{xy} = 1` and `B_{yx} = -1` for all `x < y`, then we have
a `q`-analog of the classical binomial coefficient theorem:
.. MATH::
Expand All @@ -47,14 +54,38 @@ class qCommutingPolynomials(CombinatorialFreeModule):
sage: q = ZZ['q'].fraction_field().gen()
sage: R.<x,y> = algebras.qCommutingPolynomials(q)
We verify the `q`-binomial theorem::
We verify a case of the `q`-binomial theorem::
sage: f = (x + y)^10
sage: all(f[b] == q_binomial(10, b.list()[0]) for b in f.support())
True
We now do a computation with a non-standard `B` matrix::
sage: B = matrix([[0,1,2],[-1,0,3],[-2,-3,0]])
sage: B
[ 0 1 2]
[-1 0 3]
[-2 -3 0]
sage: q = ZZ['q'].gen()
sage: R.<x,y,z> = algebras.qCommutingPolynomials(q, B)
sage: y * x
q*x*y
sage: z * x
q^2*x*z
sage: z * y
q^3*y*z
sage: f = (x + z)^10
sage: all(f[b] == q_binomial(10, b.list()[0], q^2) for b in f.support())
True
sage: f = (y + z)^10
sage: all(f[b] == q_binomial(10, b.list()[1], q^3) for b in f.support())
True
"""
@staticmethod
def __classcall_private__(cls, q, n=None, base_ring=None, names=None):
def __classcall_private__(cls, q, n=None, B=None, base_ring=None, names=None):
r"""
Normalize input to ensure a unique representation.
Expand All @@ -70,13 +101,34 @@ def __classcall_private__(cls, q, n=None, base_ring=None, names=None):
if base_ring is not None:
q = base_ring(q)

if isinstance(n, FreeAbelianMonoid_class):
indices = n
if B is None and isinstance(n, Matrix):
n, B = B, n

if names is None:
raise ValueError("the names of the variables must be given")
from sage.structure.category_object import normalize_names
if n is None:
if isinstance(names, str):
n = names.count(',') + 1
else:
n = len(names)
names = normalize_names(n, names)
n = len(names)
if B is None:
B = matrix.zero(ZZ, n)
for i in range(n):
for j in range(i+1, n):
B[i,j] = 1
B[j,i] = -1
B.set_immutable()
else:
indices = FreeAbelianMonoid(n, names)
return super().__classcall__(cls, q, indices)
if not B.is_skew_symmetric():
raise ValueError("the matrix must be skew symmetric")
B = B.change_ring(ZZ)
B.set_immutable()
return super().__classcall__(cls, q=q, B=B, names=names)

def __init__(self, q, indices):
def __init__(self, q, B, names):
r"""
Initialize ``self``.
Expand All @@ -87,7 +139,9 @@ def __init__(self, q, indices):
sage: TestSuite(R).run()
"""
self._q = q
self._B = B
base_ring = q.parent()
indices = FreeAbelianMonoid(len(names), names)
category = Algebras(base_ring).WithBasis().Graded()
CombinatorialFreeModule.__init__(self, base_ring, indices,
bracket=False, prefix='',
Expand All @@ -104,10 +158,13 @@ def _repr_(self):
sage: R.<x,y,z> = algebras.qCommutingPolynomials(q)
sage: R
q-commuting polynomial ring in x, y, z over Fraction Field of
Univariate Polynomial Ring in q over Integer Ring
Univariate Polynomial Ring in q over Integer Ring with matrix:
[ 0 1 1]
[-1 0 1]
[-1 -1 0]
"""
names = ", ".join(self.variable_names())
return "{}-commuting polynomial ring in {} over {}".format(self._q, names, self.base_ring())
return "{}-commuting polynomial ring in {} over {} with matrix:\n{}".format(self._q, names, self.base_ring(), self._B)

def _latex_(self):
r"""
Expand Down Expand Up @@ -142,7 +199,7 @@ def _term_key(x):
return (sum(L), L)

def gen(self, i):
"""
r"""
Return the ``i``-generator of ``self``.
EXAMPLES::
Expand Down Expand Up @@ -260,6 +317,24 @@ def product_on_basis(self, x, y):
x^3 + (q^2+q+1)*x^2*y + (q^2+q+1)*x*y^2 + y^3
sage: (x + y)^4
x^4 + (q^3+q^2+q+1)*x^3*y + (q^4+q^3+2*q^2+q+1)*x^2*y^2 + (q^3+q^2+q+1)*x*y^3 + y^4
With a non-standard `B` matrix::
sage: B = matrix([[0,1,2],[-1,0,3],[-2,-3,0]])
sage: q = ZZ['q'].fraction_field().gen()
sage: R.<x,y,z> = algebras.qCommutingPolynomials(q, B=B)
sage: x * y
x*y
sage: y * x^2
q^2*x^2*y
sage: z^2 * x
q^4*x*z^2
sage: z^2 * x^3
q^12*x^3*z^2
sage: z^2 * y
q^6*y*z^2
sage: z^2 * y^3
q^18*y^3*z^2
"""
# Special case for multiplying by 1
if x == self.one_basis():
Expand All @@ -271,6 +346,6 @@ def product_on_basis(self, x, y):
Ly = y.list()

# This could be made more efficient
qpow = sum(exp * sum(Ly[:i]) for i,exp in enumerate(Lx))
qpow = sum(exp * sum(self._B[j,i] * val for j, val in enumerate(Ly[:i])) for i,exp in enumerate(Lx))
return self.term(x * y, self._q ** qpow)

0 comments on commit 49129ea

Please sign in to comment.