Skip to content

Commit

Permalink
Change _lift_ too
Browse files Browse the repository at this point in the history
  • Loading branch information
kwankyu committed Nov 22, 2023
1 parent 741fbc7 commit 703ce9e
Show file tree
Hide file tree
Showing 2 changed files with 10 additions and 10 deletions.
10 changes: 5 additions & 5 deletions src/sage/schemes/curves/affine_curve.py
Original file line number Diff line number Diff line change
Expand Up @@ -2143,7 +2143,7 @@ def function(self, f):
if f not in R and f.parent() is self.coordinate_ring():
f = f.lift()

phi = self._lift_to_function_field
phi = self._map_to_function_field
num = R(f.numerator())
den = R(f.denominator())
return phi(num) / phi(den)
Expand Down Expand Up @@ -2373,15 +2373,15 @@ def _function_field(self):
return self._nonsingular_model[0]

@lazy_attribute
def _lift_to_function_field(self):
def _map_to_function_field(self):
"""
Return the map to the function field of the curve.
TESTS::
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A)
sage: C._lift_to_function_field
sage: C._map_to_function_field
Ring morphism:
From: Fraction Field of Multivariate Polynomial Ring in x, y, z
over Finite Field of size 11
Expand Down Expand Up @@ -2438,7 +2438,7 @@ def _singularities(self):
[(Point (x, y),
[Place (x, 1/x*y^3 + 1/x*y^2 + 1), Place (x, 1/x*y^3 + 1/x*y^2 + 6)])]
"""
to_F = self._lift_to_function_field
to_F = self._map_to_function_field
sing = self.singular_subscheme()

funcs = []
Expand Down Expand Up @@ -2655,7 +2655,7 @@ def places_on(self, point):
sage: Cp = Curve(x^3*y + y^3*z + x*z^3)
sage: C = Cp.affine_patch(0)
"""
phi = self._lift_to_function_field
phi = self._map_to_function_field
gs = [phi(g) for g in point.prime_ideal().gens()]
fs = [g for g in gs if not g.is_zero()]
f = fs.pop()
Expand Down
10 changes: 5 additions & 5 deletions src/sage/schemes/curves/projective_curve.py
Original file line number Diff line number Diff line change
Expand Up @@ -2349,7 +2349,7 @@ def function(self, f):
- Place (y, z + 1)
"""
S = self.ambient_space().coordinate_ring()
phi = self._lift_to_function_field
phi = self._map_to_function_field
num = S(f.numerator())
den = S(f.denominator())
if num.degree() != den.degree():
Expand Down Expand Up @@ -2427,15 +2427,15 @@ def _function_field(self):
return self._open_affine._function_field

@lazy_attribute
def _lift_to_function_field(self):
def _map_to_function_field(self):
"""
Return the map to function field of the curve.
TESTS::
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: C._lift_to_function_field
sage: C._map_to_function_field
Ring morphism:
From: Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
To: Function field in z defined by z^8 + 4*y^2*z^7 + 1
Expand Down Expand Up @@ -2508,7 +2508,7 @@ def _singularities(self):
"""
S = self.ambient_space().coordinate_ring()
to_F = self._lift_to_function_field
to_F = self._map_to_function_field
sing = self.singular_subscheme() # singular locus

# for each affine patch, places on which the dehomogenized polynomials
Expand Down Expand Up @@ -2694,7 +2694,7 @@ def places_on(self, point):
if not S.gen(i) in prime:
break

phi = self._lift_to_function_field
phi = self._map_to_function_field
denom = self._coordinate_functions[i]
gs = [phi(f)/denom**f.degree() for f in prime.gens()]
fs = [g for g in gs if not g.is_zero()]
Expand Down

0 comments on commit 703ce9e

Please sign in to comment.