Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
src/sage/algebras/orlik_{solomon,terao}.py: No construction for subcl…
Browse files Browse the repository at this point in the history
…asses of FiniteDimensionalInvariantModule
  • Loading branch information
Matthias Koeppe committed Sep 6, 2022
1 parent bfd6eee commit 7fe5763
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 2 deletions.
20 changes: 18 additions & 2 deletions src/sage/algebras/orlik_solomon.py
Original file line number Diff line number Diff line change
Expand Up @@ -576,7 +576,7 @@ class OrlikSolomonInvariantAlgebra(FiniteDimensionalInvariantModule):
.. NOTE::
The algebra structure only exists when the action on the
groundset yeilds an equivariant matroid, in the sense that
groundset yields an equivariant matroid, in the sense that
`g \cdot I \in \mathcal{I}` for every `g \in G` and for
every `I \in \mathcal{I}`.
"""
Expand Down Expand Up @@ -638,9 +638,25 @@ def action(g, m):
*args, **kwargs)

# To subclass FiniteDimensionalInvariant module, we also need a
# self._semigroup method.
# self._semigroup attribute.
self._semigroup = G

def construction(self):
r"""
Return the functorial construction of ``self``.
This implementation of the method only returns ``None``.
TESTS::
sage: M = matroids.Wheel(3)
sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra
sage: OS1 = OrlikSolomonAlgebra(QQ, M)
sage: OS1.construction() is None
True
"""
return None

def _basis_action(self, g, f):
r"""
Return the action of the group element ``g`` on the n.b.c. set ``f``
Expand Down
19 changes: 19 additions & 0 deletions src/sage/algebras/orlik_terao.py
Original file line number Diff line number Diff line change
Expand Up @@ -660,6 +660,25 @@ def action(g, m):

self._semigroup = G

def construction(self):
r"""
Return the functorial construction of ``self``.
This implementation of the method only returns ``None``.
TESTS::
sage: A = matrix([[1,1,0],[-1,0,1],[0,-1,-1]])
sage: M = Matroid(A)
sage: G = SymmetricGroup(3)
sage: def on_groundset(g,x):
....: return g(x+1)-1
sage: OTG = M.orlik_terao_algebra(QQ, invariant=(G,on_groundset))
sage: OTG.construction() is None
True
"""
return None

def _basis_action(self, g, f):
r"""
Let ``f`` be an n.b.c. set so that it indexes a basis
Expand Down

0 comments on commit 7fe5763

Please sign in to comment.