Skip to content
/ NTRU Public

Simple implementation of NTRU because I was bored.

License

Notifications You must be signed in to change notification settings

sakkarose/NTRU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NTRU

Introduction

Just a simple implementation of NTRU which is one of the Round-3 Finalists of Post-Quantum Cryptography in Public-key Encryption and Key-establishment Algorithms. For the same reason, sympy is used for polynomial. So for the larger polynomial rings, this might needs more works. numpy is also needed for many things to run this. This is just for studying purposes so the code can be unoptimized and outputs will be uncompressed. Do not use this for actual cryptographic uses.

Moreover, the post-quantum security parameters are suggested from IEEE p1363.1 Standard [1].

At the moment, there is only NTRUEncrypt (& NTRUDecrypt).

To-do & Work-in-progress

  • Working on NTRUSign.
  • Resolving this program's poor performance on kem & ss-kem algorithm, so it needs to be reworked in order to handle them.

Installation

  • No installation needed, but you need to have sympy and numpy in python.
  • After that you can run the program by executing the main.py file .
  • Also pypy3 is optional.

Parameters [2]

  • High security

    • -S4 : Optimized for size.
    • -C4 : Optimized for cost.
    • -F4 : Optimized for speed.
  • Moderate security : -S3, -C3, -F3

  • Low security : -S2, -C2, -F2

  • Lowest security : -S1, -C1, -F1

  • If you don't pick parameter, it will use the default parameter which is F4.

Parameter Set N p q dg df dr
(S1) ees401ep1 401 3 2048 133 113 113
(S2) ees449ep1 449 3 2048 149 134 134
(S3) ees677ep1 677 3 2048 225 157 157
(S4) ees1087ep2 1087 3 2048 362 120 120
(C1) ees541ep1 541 3 2048 180 49 49
(C2) ees613ep1 613 3 2048 204 55 55
(C3) ees887ep1 887 3 2048 295 81 81
(C4) ees1171ep1 1171 3 2048 390 106 106
(F1) ees659ep1 659 3 2048 219 38 38
(F2) ees761ep1 761 3 2048 253 42 42
(F3) ees1087ep1 1087 3 2048 362 63 63
(F4) ees1499ep1 1499 3 2048 499 79 79

Generating Key

  • To generate keys. We run the main.py with parameter -g.
  • To change file name of the keys. We add parameter -k. (Default is ntru).

Example

  • To generate public and private keys with high security, optimized for speed and named "test_key".
python3 main.py -F4 -g -k test_key
  • To generate keys with your own parameters.
python3 main.py -g -N 1499 -p 3 -q 2048 -dg 499 -df 79 -dr 79

Encrypting

  • To encrypt a string, use -estr, and -efile for a file
  • To define the output, you can use -of to write it in a file, and -ot will print the output to the screen.

Example

  • To encrypt a string "Hello" with key named "test_key" and print the output on the screen.
python3 main.py -k test_key -estr "Hello" -ot
  • To encrypt a file named "Hi.txt" with key named "test_key" and write it in the file named "post_hi.bin"
python3 main.py -k test_key -efile Hi.txt -of post_hi.bin

Decrypting

  • Same for encrypting, we have -dstr for a string and -dfile for a file.
  • Both -of and -otare also working for decrypting too.

Example

  • To decrypt a cyphertext of "Hello" we did earlier with key named "test_key" and print the output on the screen.
python3 main.py -k test_key -dstr "12 -16 18 -4 -15 -28 -23 -20 31 31 -13 7 9 21 -2 4 25 -20 -14 -30 13 3 1 -10 -9 27 -20 -13 5 -31 -13 15 3 -22 13 -2 21 -19 -27 20 -31 25 -14 -3 3 -15 -11 18 -22 -1 -31 -3 -7 21 20 19 -25 -11 25 24 32 -21 -14 -10 19 -15 -26 17 -12 -17 8 -5" -ot
  • To decrypt a file named "post_hi.bin" with key named "test_key" and write it in the file named "post_post_hi.bin"
python3 main.py -k test_key -dfile Hi.txt -of post_post_hi.bin

Notes

References

1 : "IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard Problems over Lattices," in IEEE Std 1363.1-2008 , vol., no., pp.1-81, 10 March 2009, doi: 10.1109/IEEESTD.2009.4800404.

2 : T. Kim and M. -K. Lee, "Efficient and Secure Implementation of NTRUEncrypt Using Signed Sliding Window Method," in IEEE Access, vol. 8, pp. 126591-126605, 2020, doi: 10.1109/ACCESS.2020.3008182.

Releases

No releases published

Packages

No packages published