Skip to content

Official Code for: Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection

License

Notifications You must be signed in to change notification settings

sbb-gh/experimental-design-multichannel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection

This is the official code for the paper available on OpenReview and on arxiv.

The neural-network based algorithm TADRED is available here.

If you find this repo useful, please consider citing the paper:

@article{
    title={Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection},
    author={Stefano B. Blumberg and Paddy J. Slator and Daniel C. Alexander},
    journal={In: International Conference on Learning Representations (ICLR)},
    year={2024}
}

Contact

stefano.blumberg.17@ucl.ac.uk

Installation Part 1: Environment

First create an environment and enter it, we use Python v3.10.4. We provide two examples either using Pyenv or Conda:

Pyenv

# Pyenv documentation is [link](https://github.com/pyenv), where <INSTALL_DIR> is the directory the virtual environment is installed in.
python3.10 -m venv <INSTALL_DIR>/experimental-design-multichannel-env # Use compatible Python version e.g. 3.10.4
. <INSTALL_DIR>/experimental-design-multichannel-env/bin/activate

Conda

# Conda documentation is [link](https://docs.conda.io/en/latest/), where <INSTALL_DIR> is the directory the virtual environment is installed in.
conda create -n experimental-design-multichannel-env python=3.10.4
conda activate experimental-design-multichannel-env

Installation Part 2: TADRED and other Packages

Code requires:
tadred: the novel method presented in the paper with dependencies pytorch, numpy, pyyaml, hydra,
optional modules to generate the data: dipy, dmipy, nibabel.

Code is tested using PyTorch v2.0.0, cuda 11.7 on the GPU, dipy v1.5.0, nibabel v5.1.0, dmipy v1.0.5.

We provide two options for installing the code:

Python Package from Source

pip install git+https://github.com/sbb-gh/experimental-design-multichannel.git@main

Using pip

pip install numpy==1.23.4 git+https://github.com/AthenaEPI/dmipy.git@1.0.1 # use compatible numpy
pip install dipy==1.5.0
pip install nibabel==5.1.0
pip install git+https://github.com/sbb-gh/tadred.git@main # can also install tadred from source: www.github.com/sbb-gh/tadred

Tutorial

We provide a tutorial in tutorial.py that provides examples on generating data, options to load the data into TADRED, various hyperparameter choices for TADRED, and options to save the results.

Results

We provide Python code to generate data, train TADRED and perform evaulation. Note, to replicate exact results, we perform a hyperparameter search on the two networks - described in paper appendix A.

VERDICT Results

Duplicating the results for VERDICT in table 1.

from dmipy.data import saved_acquisition_schemes
from tadred import data_processing, tadred_main, utils

import simulations

scheme = saved_acquisition_schemes.panagiotaki_verdict_acquisition_scheme()
nsamples_train, nsamples_val, nsamples_test  = 10**6, 10**5, 10**5

utils.set_numpy_seed(0)
train_sims = simulations.create_verdict_data(nsamples_train, scheme)
val_sims = simulations.create_verdict_data(nsamples_val, scheme)
test_sims = simulations.create_verdict_data(nsamples_test, scheme)
data = data_processing.tadred_data_format(train_sims,val_sims,test_sims)

args = utils.load_base_args_combine_with_yaml("./cfg_files/table1_cfg.yaml")
# Set the below to network sizes, see paper-section-B
args.network.num_units_score = [] # CHANGE e.g. [1000, 1000]
args.network.num_units_task = [] # CHANGE e.g. [1000, 1000]

tadred_main.run(args, data)

NODDI Results

Duplicating the results for NODDI in appendix B table 7.

from dmipy.data import saved_acquisition_schemes
from tadred import data_processing, tadred_main, utils

import simulations

scheme = saved_acquisition_schemes.isbi2015_white_matter_challenge_scheme()
nsamples_train, nsamples_val, nsamples_test  = 10**5, 10**4, 10**4

utils.set_numpy_seed(0)
train_sims = simulations.create_noddi_data(nsamples_train, scheme)
val_sims = simulations.create_noddi_data(nsamples_val, scheme)
test_sims = simulations.create_noddi_data(nsamples_test, scheme)
data = data_processing.tadred_data_format(train_sims,val_sims,test_sims)

args = utils.load_base_args_combine_with_yaml("./cfg_files/table7_cfg.yaml")

# Set the below to network sizes, see paper-section-B
args.network.num_units_score = [] # CHANGE e.g. [1000, 1000]
args.network.num_units_task = [] # CHANGE e.g. [1000, 1000]

tadred_main.run(args, data)

HCP Test Retest Results

To reproduce results in figure 2.

from pathlib import Path

import nibabel as nib
import numpy as np
from tadred_code import data_processing, tadred_main, utils

from parameter_fit import compute_mse_downstream_metrics

# Register at https://db.humanconnectome.org/data/projects/HCP_Retest
# TODO define load_base  where downloaded subjects below
subj_splits = dict(
    subj_train=("103818_1", "105923_1", "111312_1"),
    subj_val=("114823_1",),
    subj_test=("115320_1",),
)

subj_processed: dict[str, np.ndarray] = dict()

for subj_name in subj_splits["subj_train"] + subj_splits["subj_val"] + subj_splits["subj_test"]:
    # Load data, choose <load_base>
    subj_dir = Path(load_base, "data1", subj_name, "T1w", "Diffusion")
    subj_data = nib.load(Path(subj_dir, "data.nii.gz")).get_fdata().astype(np.float32)
    subj_mask = nib.load(Path(subj_dir, "nodif_brain_mask.nii.gz")).get_fdata().astype(np.float32)

    idxs_mask = np.where(subj_mask == 1)
    subj_brain = subj_data[idxs_mask]

    # Same for all subjects
    bvals = np.loadtxt(Path(subj_dir, "bvals"), dtype=np.float32)
    bvecs = np.loadtxt(Path(subj_dir, "bvecs"), dtype=np.float32)

    # Normalizing b0values
    bvals0_idx = np.where(bvals <= 5)
    bvals0 = subj_brain[:, bvals0_idx]
    bvals0 = np.mean(bvals0, axis=2)
    subj_brain /= bvals0

    # Remove nans
    not_nan = ~np.isnan(np.mean(subj_brain, axis=1))
    subj_brain = subj_brain[not_nan, :]
    idxs_mask_mod = tuple(idxs_mask_i[np.where(not_nan)] for idxs_mask_i in idxs_mask)
    subj_brain_3D = np.zeros(subj_data.shape, dtype=np.float32)
    subj_brain_3D[idxs_mask_mod] = subj_brain

    subj_processed[subj_name] = subj_brain

data: dict[str, np.ndarray | dict[str, np.ndarray]] = dict()
data["other"] = dict(bvals=bvals, bvecs=bvecs)

for split in ("train", "val", "test"):
    data[split] = []
    for subj_name in subj_splits["subj_" + split]:
        data[split].append(subj_processed[subj_name])
    data[split] = np.concatenate(data[split])

args = utils.load_base_args_combine_with_yaml("./cfg_files/table7_cfg.yaml")

# Set the below to network sizes, see paper-section-B
args.network.num_units_score = [] # CHANGE e.g. [1000, 1000]
args.network.num_units_task = [] # CHANGE e.g. [1000, 1000]

results = tadred_main.run(args, data)

# Compute downstream metrics
for Ci in results["args"]["tadred_train_eval"]["feature_set_sizes_evaluated"]:
    data_pred = results[Ci]["test_output"]
    data_tar = data["test"]
    downstream_metrics = compute_mse_downstream_metrics(data_pred, data_tar, bvals, bvecs)
    results[Ci]["downstream_metrics"] = downstream_metrics

Remote Sensing Hyperspectral Imaging (AVIRIS) Results

Duplicating the results for AVIRIS hyperspectral imaging in table 3.

import numpy as np
import skimage.io
from tadred import tadred_main, utils  # data_processing,

np.random.seed(0)

# Download data from https://purr.purdue.edu/publications/1947/serve/1?render=archive
# Unzip into chosen <data_dir>

trainval_load = <data_dir>'/10_4231_R7RX991C/aviris_hyperspectral_data/19920612_AVIRIS_IndianPine_NS-line.tif'
test_load = <data_dir>'/10_4231_R7RX991C/aviris_hyperspectral_data/19920612_AVIRIS_IndianPine_EW-line_R.tif'

# Prepare training and validation data removing outliers
trainval_input = skimage.io.imread(trainval_load).astype(np.float32)
trainval_input[0,...] = np.clip(trainval_input[0,...], None, np.percentile(trainval_input[0,...], q=99.999))
trainval_input[2,...] = np.clip(trainval_input[2,...], None, np.percentile(trainval_input[2,...], q=99.999))
trainval_input = np.reshape(trainval_input, (trainval_input.shape[0],-1))
trainval_input = np.transpose(trainval_input)
max_val = np.float32(np.percentile(np.abs(trainval_input),q=99,axis=0))
trainval_input = 255*trainval_input / max_val

# Prepare test data removing outliers
test_input = skimage.io.imread(test_load).astype(np.float32)
test_input[0,-1,...] = np.percentile(test_input[0,...], q=50)
test_input[2,...] = np.clip(test_input[2,...], None, np.percentile(test_input[2,...], q=99.999) )
test_input[3,...] = np.clip(test_input[3,...], None, np.percentile(test_input[3,...], q=99.999) )
test_input = np.reshape(test_input, (test_input.shape[0],-1))
test_input = np.transpose(test_input)
test_input = 255*test_input / max_val

# Separate training and validation data
n_train = int(trainval_input.shape[0]*0.9)
n_val = n_train_val - n_train
samples_idx = np.array(range(trainval_input.shape[0]))
np.random.shuffle(samples_idx)
data = dict(
    train=trainval_input[samples_idx[0:n_train],:],
    val=trainval_input[samples_idx[n_train:],:],
    test=test_input,
)

args = utils.load_base_args_combine_with_yaml("./cfg_files/table3_cfg.yaml")

# Set the below to network sizes, see paper-section-B
args.network.num_units_score = [] # CHANGE e.g. [1000, 1000]
args.network.num_units_task = [] # CHANGE e.g. [1000, 1000]

tadred_main.run(args, data)

Acknowledgments

Many thanks to David Perez-Suarez, Stefan Piatek, Tom Young, who provided valuable feedback on the code.

About

Official Code for: Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages