Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

👽️ ndimage: 1.15.0 support #346

Merged
merged 4 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 0 additions & 13 deletions .mypyignore-todo
Original file line number Diff line number Diff line change
@@ -1,16 +1,3 @@
scipy\.ndimage\.__all__
scipy\.ndimage\.(_?filters\.)?convolve
scipy\.ndimage\.(_?filters\.)?correlate
scipy\.ndimage\.(_?filters\.)?laplace
scipy\.ndimage\.(_?filters\.)?generic_filter
scipy\.ndimage\.(_?filters\.)?(gaussian|generic)_(gradient_magnitude|laplace)
scipy\.ndimage\.(_?morphology\.)?(black|white)_tophat
scipy\.ndimage\.(_?morphology\.)?binary_(propagation|fill_holes|hit_or_miss)
scipy\.ndimage\.(_?morphology\.)?(binary|grey)_(closing|opening|dilation|erosion)
scipy\.ndimage\.(_?morphology\.)?morphological_(gradient|laplace)
scipy\.ndimage\._ni_docstrings\.docfiller
scipy\.ndimage\._ni_support\._extend_mode_to_code

scipy\.optimize\.elementwise
scipy\.optimize\._cobyqa_py\.COBYQA_LOCK
scipy\.optimize\.(_basinhopping\.)?basinhopping
Expand Down
60 changes: 52 additions & 8 deletions scipy-stubs/ndimage/__init__.pyi
Original file line number Diff line number Diff line change
@@ -1,4 +1,13 @@
from . import filters, fourier, interpolation, measurements, morphology
# Deprecated namespaces, to be removed in v2.0.0
from . import (
filters as filters,
fourier as fourier,
interpolation as interpolation,
measurements as measurements,
morphology as morphology,
)

#
from ._filters import (
convolve,
convolve1d,
Expand Down Expand Up @@ -36,8 +45,48 @@ from ._interpolation import (
spline_filter1d,
zoom,
)
from ._measurements import *
from ._morphology import *
from ._measurements import (
center_of_mass,
extrema,
find_objects,
histogram,
label,
labeled_comprehension,
maximum,
maximum_position,
mean,
median,
minimum,
minimum_position,
standard_deviation,
sum,
sum_labels,
value_indices,
variance,
watershed_ift,
)
from ._morphology import (
binary_closing,
binary_dilation,
binary_erosion,
binary_fill_holes,
binary_hit_or_miss,
binary_opening,
binary_propagation,
black_tophat,
distance_transform_bf,
distance_transform_cdt,
distance_transform_edt,
generate_binary_structure,
grey_closing,
grey_dilation,
grey_erosion,
grey_opening,
iterate_structure,
morphological_gradient,
morphological_laplace,
white_tophat,
)

__all__ = [
"affine_transform",
Expand All @@ -58,9 +107,7 @@ __all__ = [
"distance_transform_cdt",
"distance_transform_edt",
"extrema",
"filters",
"find_objects",
"fourier",
"fourier_ellipsoid",
"fourier_gaussian",
"fourier_shift",
Expand All @@ -80,7 +127,6 @@ __all__ = [
"grey_erosion",
"grey_opening",
"histogram",
"interpolation",
"iterate_structure",
"label",
"labeled_comprehension",
Expand All @@ -91,7 +137,6 @@ __all__ = [
"maximum_filter1d",
"maximum_position",
"mean",
"measurements",
"median",
"median_filter",
"minimum",
Expand All @@ -100,7 +145,6 @@ __all__ = [
"minimum_position",
"morphological_gradient",
"morphological_laplace",
"morphology",
"percentile_filter",
"prewitt",
"rank_filter",
Expand Down
71 changes: 52 additions & 19 deletions scipy-stubs/ndimage/_filters.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,24 @@ _Mode: TypeAlias = Literal["reflect", "constant", "nearest", "mirror", "wrap", "
_Modes: TypeAlias = _Mode | Sequence[_Mode]
_Ints: TypeAlias = int | Sequence[int]

_FilterFunc1D: TypeAlias = Callable[Concatenate[onp.ArrayND[np.float64], onp.ArrayND[np.float64], ...], None]
_FilterFuncND: TypeAlias = Callable[
Concatenate[onp.ArrayND[np.float64], ...],
onp.ToComplex | _ScalarValueOut | _ScalarArrayOut,
]
_Derivative: TypeAlias = Callable[
# (input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
Concatenate[_ScalarArrayOut, int, np.dtype[_ScalarValueOut], _Mode, onp.ToComplex, ...],
_ScalarArrayOut,
]

@type_check_only
class _GaussianKwargs(TypedDict, total=False):
truncate: float
radius: _Ints

###

# TODO: allow passing dtype-likes to `output`

#
Expand All @@ -46,6 +64,8 @@ def laplace(
output: _ScalarArrayOut | None = None,
mode: _Modes = "reflect",
cval: onp.ToComplex = 0.0,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
Expand All @@ -56,6 +76,8 @@ def prewitt(
mode: _Modes = "reflect",
cval: onp.ToComplex = 0.0,
) -> _ScalarArrayOut: ...

#
def sobel(
input: onp.ToComplex | onp.ToComplexND,
axis: int = -1,
Expand All @@ -74,6 +96,8 @@ def correlate1d(
cval: onp.ToComplex = 0.0,
origin: int = 0,
) -> _ScalarArrayOut: ...

#
def convolve1d(
input: onp.ToComplex | onp.ToComplexND,
weights: onp.ToFloat | onp.ToFloat1D,
Expand All @@ -92,38 +116,43 @@ def correlate(
mode: _Mode = "reflect",
cval: onp.ToComplex = 0.0,
origin: _Ints = 0,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
def convolve(
input: onp.ToComplex | onp.ToComplexND,
weights: onp.ToFloat | onp.ToFloatND,
output: _ScalarArrayOut | None = None,
mode: _Mode = "reflect",
cval: onp.ToComplex = 0.0,
origin: _Ints = 0,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#

@type_check_only
class _GaussianKwargs(TypedDict, total=False):
truncate: float
radius: _Ints
axes: tuple[int, ...]

def gaussian_laplace(
input: onp.ToComplex | onp.ToComplexND,
sigma: onp.ToFloat | onp.ToFloatND,
output: _ScalarArrayOut | None = None,
mode: _Modes = "reflect",
cval: onp.ToComplex = 0.0,
*,
axes: tuple[int, ...] | None = None,
**kwargs: Unpack[_GaussianKwargs],
) -> _ScalarArrayOut: ...

#
def gaussian_gradient_magnitude(
input: onp.ToComplex | onp.ToComplexND,
sigma: onp.ToFloat | onp.ToFloatND,
output: _ScalarArrayOut | None = None,
mode: _Modes = "reflect",
cval: onp.ToComplex = 0.0,
*,
axes: tuple[int, ...] | None = None,
**kwargs: Unpack[_GaussianKwargs],
) -> _ScalarArrayOut: ...

Expand Down Expand Up @@ -156,12 +185,6 @@ def gaussian_filter(
) -> _ScalarArrayOut: ...

#
_Derivative: TypeAlias = Callable[
# (input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
Concatenate[_ScalarArrayOut, int, np.dtype[_ScalarValueOut], _Mode, onp.ToComplex, ...],
_ScalarArrayOut,
]

def generic_laplace(
input: onp.ToComplex | onp.ToComplexND,
derivative2: _Derivative,
Expand All @@ -170,7 +193,11 @@ def generic_laplace(
cval: onp.ToComplex = 0.0,
extra_arguments: tuple[object, ...] = (),
extra_keywords: dict[str, object] | None = None,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
def generic_gradient_magnitude(
input: onp.ToComplex | onp.ToComplexND,
derivative: _Derivative,
Expand All @@ -179,10 +206,11 @@ def generic_gradient_magnitude(
cval: onp.ToComplex = 0.0,
extra_arguments: tuple[object, ...] = (),
extra_keywords: dict[str, object] | None = None,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
_FilterFunc1D: TypeAlias = Callable[Concatenate[onp.ArrayND[np.float64], onp.ArrayND[np.float64], ...], None]

def generic_filter1d(
input: onp.ToFloat | onp.ToFloatND,
Expand All @@ -198,11 +226,6 @@ def generic_filter1d(
) -> _FloatArrayOut: ...

#
_FilterFuncND: TypeAlias = Callable[
Concatenate[onp.ArrayND[np.float64], ...],
onp.ToComplex | _ScalarValueOut | _ScalarArrayOut,
]

def generic_filter(
input: onp.ToFloat | onp.ToFloatND,
function: _FilterFuncND | LowLevelCallable,
Expand All @@ -214,6 +237,8 @@ def generic_filter(
origin: _Ints = 0,
extra_arguments: tuple[object, ...] = (),
extra_keywords: dict[str, object] | None = None,
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
Expand All @@ -226,6 +251,8 @@ def uniform_filter1d(
cval: onp.ToComplex = 0.0,
origin: int = 0,
) -> _ScalarArrayOut: ...

#
def minimum_filter1d(
input: onp.ToComplex | onp.ToComplexND,
size: int,
Expand All @@ -235,6 +262,8 @@ def minimum_filter1d(
cval: onp.ToComplex = 0.0,
origin: int = 0,
) -> _ScalarArrayOut: ...

#
def maximum_filter1d(
input: onp.ToComplex | onp.ToComplexND,
size: int,
Expand Down Expand Up @@ -269,6 +298,8 @@ def minimum_filter(
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
def maximum_filter(
input: onp.ToComplex | onp.ToComplexND,
size: int | tuple[int, ...] | None = None,
Expand Down Expand Up @@ -307,6 +338,8 @@ def rank_filter(
*,
axes: tuple[int, ...] | None = None,
) -> _ScalarArrayOut: ...

#
def percentile_filter(
input: onp.ToComplex | onp.ToComplexND,
percentile: onp.ToFloat,
Expand Down
Loading
Loading