To develop a deep learning model using TensorFlow and Keras that can classify images of sea creatures into their respective categories. This involves building a neural network capable of learning complex patterns in image data, achieving high accuracy in predicting the correct category for unseen data.
Problem: Many marine species are endangered due to climate change, overfishing, and habitat destruction.
Marine ecosystems are under significant threat due to climate change, overfishing, and habitat destruction. Automated classification of sea creatures plays a crucial role in addressing these challenges by providing data-driven solutions for conservation efforts.
Solution: Classifying sea creatures can aid in:
- Identifying critical habitats that need protection.
- Monitoring the effects of conservation programs.
- Detecting illegal fishing activities by identifying bycatch or endangered species.
By integrating sea creature classification into conservation workflows, researchers and policymakers can better understand, monitor, and protect marine ecosystems. This technology not only saves time and resources but also provides critical insights into the health of our oceans, helping to safeguard biodiversity for future generations.
- Collect data of Sea animals (images).
- Preprocess the data by cleaning and resampling if necessary.
- Train the model on the historical data.
- Validate the model's performance using evaluation metrics.
- Make classification.
https://www.kaggle.com/datasets/vencerlanz09/sea-animals-image-dataste
dataset has now 23 different Sea animal classes
This dataset contain below categories of images of sea creatures:
- Seahorse
- Nudibranchs
- Sea Urchins
- Octopus
- Puffers
- Rays
- Whales
- Eels
- Crabs
- Squid
- Corals
- Dolphins
- Seal
- Penguin
- Starfish
- Lobster
- Jelly Fish
- Sea Otter
- Fish
- Shrimp
- Clams
- Fish
- Turtle Tortoise
Aim is to classify the sea creatures
- Pipenv, Python virtualenv management tool
- docker and docker-compose
- Clone the project from repository
https://github.com/senali-d/sea_creatures_classification.git
cd sea_creatures_classification
- Build the Docker image from Dockerfile
docker build -t sea-creature-model .
- Run the Docker container from the created image
docker run -it --rm -p 8080:8080 sea-creature-model:latest
- Test the model
pipenv shell
python test.py
If setup is correct, the following output should be displayed:
{'Clams': 8.111491203308105,
'Corals': 0.6925224661827087,
'Crabs': -9.400032997131348,
'Dolphin': -10.369836807250977,
'Eel': -1.9706131219863892,
'Fish': 1.261847734451294,
'Jelly Fish': -1.22406804561615,
'Lobster': -2.665487289428711,
'Nudibranchs': -3.58951473236084,
'Octopus': 1.8881003856658936,
'Otter': -7.621030807495117,
'Penguin': -4.9838128089904785,
'Puffers': -0.42829596996307373,
'Seahorse': -5.163271903991699,
'Sea Rays': -3.3993330001831055,
'Sea Urchins': -0.30658140778541565,
'Seal': -5.755532741546631,
'Sharks': -1.4640175104141235,
'Shrimp': 1.9052776098251343,
'Squid': -5.9878153800964355,
'Starfish': -4.738603115081787,
'Turtle_Tortoise': -3.043990135192871,
'Whale': -3.8058106899261475}
![Screenshot 2025-01-12 at 3 12 18 AM](https://private-user-images.githubusercontent.com/52546856/402384542-dacadaeb-51c8-44d9-8f83-e408787b6873.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzNDczMjUsIm5iZiI6MTczOTM0NzAyNSwicGF0aCI6Ii81MjU0Njg1Ni80MDIzODQ1NDItZGFjYWRhZWItNTFjOC00NGQ5LThmODMtZTQwODc4N2I2ODczLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTIlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEyVDA3NTcwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWY1MDc5NGQ4YTllZTU4N2MwODE2N2MzZWFmN2JiYmRhNGYzOTNlMGU3YzQ5YWIxMmFkNWQ4YzM5ZjgxMDdmMmImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.JXvtaT-6ceKLnfpf9MHT3GlGNlzBSJzpX2BT9FndlaE)
![Screenshot 2025-01-12 at 3 49 25 AM](https://private-user-images.githubusercontent.com/52546856/402384559-89d02601-7838-4c5f-9668-7a8c41b1a12d.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzNDczMjUsIm5iZiI6MTczOTM0NzAyNSwicGF0aCI6Ii81MjU0Njg1Ni80MDIzODQ1NTktODlkMDI2MDEtNzgzOC00YzVmLTk2NjgtN2E4YzQxYjFhMTJkLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTIlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEyVDA3NTcwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWM3NDQyOTg1MmEzYzFiOGRlOGJjMTU3NjBhMTg1Mjg3M2E4ZDZkYzEwOTdmODBkNzAyMjM0NTMxZjQ5Yjg2N2QmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.pIF07-JAirlhLZvXkC4kpbFB1LcAPNPTbRN_DQuj-_g)