Skip to content

extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

License

Notifications You must be signed in to change notification settings

sepidsh/Housegan-data-reader

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

House-GAN++ (data-reader)

Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects, CVPR 2021. Project website.

Input Data

alt text
Data: RPLAN dataset, which offers 60k vector-graphics floorplans designed by professional architects.

Requirtments

pip install argparse
pip install numpy
pip install matplotlib
pip install shapely
pip install descartes 

How to run

python raster_to_json.py --path #rplan_dataset/#image_number.png

Output data format

The data file (e.g., /sample_output/0.json).

ROOM_CLASS = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "balcony": 5, "entrance": 6, "dining room": 7, "study room": 8,
              "storage": 10 , "front door": 15, "unknown": 16, "interior_door": 17}
              
              
# having room type in it
"room_type": [3, 4, 1, 3 ]

#bounding boxes per room        
"boxes: [[72.0, 161.0, 124.0, 220.0], [72.0, 130.0, 107.0, 157.0], [111.0, 28.0, 184.0, 203.0], [72.0, 87.0, 124.0, 126.0]] 

#first four entry are per list are rooms edges and 4th and 6th are showing what room type is on each side of edge 
"edges":[72.0, 161.0, 72.0, 220.0, 3, 0], ...,[107.0, 130.0, 72.0, 130.0, 4, 0], [148.0, 28.0, 148.0, 87.0, 1, 2]] 

#room indexes that are on each side of the edges
"ed_rm":[0], [0], [0], [0, 2], ..., [2], [2, 3], [2, 1], [2, 0], [2]] 

Citation

Please consider citing our work.

@inproceedings{nauata2021house,
  title={House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects},
  author={Nauata, Nelson and Hosseini, Sepidehsadat and Chang, Kai-Hung and Chu, Hang and Cheng, Chin-Yi and Furukawa, Yasutaka},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13632--13641},
  year={2021}
}

Contact

If you have any question, feel free to contact me at sepidh@sfu.ca

Acknowledgement

This research is partially supported by NSERC Discovery Grants, NSERC Discovery Grants Accelerator Supplements, DND/NSERC Discovery Grant Supplement, and Autodesk. We would like to thank architects and students for participating in our user study.

About

extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages