Skip to content

seunghan96/pits

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Patch Independence for Time Series

Seunghan Lee, Taeyoung Park, Kibok Lee


This repository contains the official implementation for the paper Patch Independence for Time Series

This work is accepted in


0. Dataset

(1) TS forecasting

Download datasets according to PatchTST

Put the data files under

  • \PITS_self_supervised\data\
  • \PITS_supervised\data\

(2) TS classification

Download datasets according to xxxxx

Put the data files under

  • \PITS_self_supervised\data\


1. Self-supervised PITS

(1) TS forecasting

Dataset & Hyperparameters

ds_pretrain = 'etth1'
ds_finetune = 'etth1'

# (1) Model Size
d_model = 128

# (2) Input Size
context_points = 512
patch_len = stride = 12
num_patches = context_points//patch_len

# (3) Finetune Epoch
ep_ft_head = 5
ep_ft_entire = ep_ft_head * 2

1) Pretrain

!python PITS_pretrain.py --dset_pretrain {ds_pretrain} \
    --context_points {context_points} --d_model {d_model} --patch_len {patch_len} --stride {stride} \

2) Finetune

for pred_len in [96, 192, 336, 720]:
  !python PITS_finetune.py --dset_pretrain {ds_pretrain} --dset_finetune {ds_finetune} \
    --n_epochs_finetune_head {ep_ft_head} --n_epochs_finetune_entire {ep_ft_entire} \
    --target_points {pred_len} --num_patches {num_patches} --context_points {context_points} \
    --d_model {d_model} --patch_len {patch_len} --stride {stride} \
      --is_finetune 1 

(2) TS classification

Dataset & Hyperparameters

# ep_pretrain = xx
# ep_ft_head = xx
# ep_ft_entire = ep_ft_head * 2
# d_model = xx
# patch_len = stride = xx
# aggregate = xx

context_points = 176
num_patches = int(cp/stride)
batch_size = 128

# ft_data_length = xx
# num_classes = xx
ds_pretrain = 'SleepEEG'
ds_finteune = 'Epilepsy' # ['Epilepsy','FD_B','Gesture','EMG']

1) Pretrain

!python PITS_pretrain.py --dset_pretrain {ds_pretrain} \
    --n_epochs_pretrain {ep_pretrain}  --context_points {context_points} \
	--d_model {d_model} --patch_len {patch_len} --stride {stride} 

2) Finetune

!python PITS_finetune.py --dset_pretrain {ds_pretrain} --dset_finetune {ds_finetune} \
    --n_epochs_finetune_head {ep_ft_head} --n_epochs_finetune_entire {ep_ft_entire} \
    --target_points {num_classes} --num_patches {num_patches} --context_points {context_points} \
    --d_model {d_model} --patch_len {patch_len} --stride {stride} --aggregate {aggregate} \
    --is_finetune_cls 1 --cls 1 


2. Supervised PITS

Refer to scripts/


Contact

If you have any questions, please contact seunghan9613@yonsei.ac.kr


Acknowledgement

We appreciate the following github repositories for their valuable code base & datasets:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published