Skip to content

Commit

Permalink
[Kernel][Core] Add AWQ support to the Marlin kernel (vllm-project#6612)
Browse files Browse the repository at this point in the history
  • Loading branch information
alexm-redhat authored Jul 21, 2024
1 parent 25e778a commit 396d92d
Show file tree
Hide file tree
Showing 21 changed files with 1,602 additions and 284 deletions.
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
Expand Down
12 changes: 8 additions & 4 deletions csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -89,15 +89,19 @@ torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
int64_t size_k);

torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
torch::Tensor& b_scales, torch::Tensor& g_idx,
torch::Tensor& perm, torch::Tensor& workspace,
int64_t num_bits, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full);
torch::Tensor& b_scales, torch::Tensor& b_zeros,
torch::Tensor& g_idx, torch::Tensor& perm,
torch::Tensor& workspace, int64_t num_bits,
int64_t size_m, int64_t size_n, int64_t size_k,
bool is_k_full, bool has_zp);

torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
int64_t size_k, int64_t size_n,
int64_t num_bits);

torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
int64_t size_n, int64_t num_bits);

torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
torch::Tensor& b_scales, torch::Tensor& workspace,
int64_t num_bits, int64_t size_m, int64_t size_n,
Expand Down
33 changes: 15 additions & 18 deletions csrc/quantization/fp8/fp8_marlin.cu
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,10 @@
* Adapted from https://github.com/IST-DASLab/marlin
*/

#include "../gptq_marlin/gptq_marlin.cuh"
#include "../gptq_marlin/gptq_marlin_dtypes.cuh"
#include "../gptq_marlin/marlin.cuh"
#include "../gptq_marlin/marlin_dtypes.cuh"

using namespace gptq_marlin;
using namespace marlin;

#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
Expand Down Expand Up @@ -1224,16 +1224,15 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
", size_k = ", size_k);

// Verify B
TORCH_CHECK(size_k % gptq_marlin::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", gptq_marlin::tile_size);
TORCH_CHECK((size_k / gptq_marlin::tile_size) == b_q_weight.size(0),
TORCH_CHECK(size_k % marlin::tile_size == 0, "size_k = ", size_k,
" is not divisible by tile_size = ", marlin::tile_size);
TORCH_CHECK((size_k / marlin::tile_size) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
", size_k = ", size_k, ", tile_size = ", gptq_marlin::tile_size);
TORCH_CHECK(b_q_weight.size(1) % gptq_marlin::tile_size == 0,
", size_k = ", size_k, ", tile_size = ", marlin::tile_size);
TORCH_CHECK(b_q_weight.size(1) % marlin::tile_size == 0,
"b_q_weight.size(1) = ", b_q_weight.size(1),
" is not divisible by tile_size = ", gptq_marlin::tile_size);
int actual_size_n =
(b_q_weight.size(1) / gptq_marlin::tile_size) * pack_factor;
" is not divisible by tile_size = ", marlin::tile_size);
int actual_size_n = (b_q_weight.size(1) / marlin::tile_size) * pack_factor;
TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
", actual_size_n = ", actual_size_n);

Expand Down Expand Up @@ -1274,11 +1273,9 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
num_groups = b_scales.size(0);

// Verify workspace size
TORCH_CHECK(
size_n % gptq_marlin::min_thread_n == 0, "size_n = ", size_n,
", is not divisible by min_thread_n = ", gptq_marlin::min_thread_n);
int min_workspace_size =
(size_n / gptq_marlin::min_thread_n) * gptq_marlin::max_par;
TORCH_CHECK(size_n % marlin::min_thread_n == 0, "size_n = ", size_n,
", is not divisible by min_thread_n = ", marlin::min_thread_n);
int min_workspace_size = (size_n / marlin::min_thread_n) * marlin::max_par;
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = ", workspace.numel(),
" is below min_workspace_size = ", min_workspace_size);
Expand All @@ -1290,14 +1287,14 @@ torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
b_scales.data_ptr<at::Half>(), size_m, size_n, size_k,
workspace.data_ptr(), num_bits, num_groups, group_size, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
gptq_marlin::max_par);
marlin::max_par);
} else if (a.scalar_type() == at::ScalarType::BFloat16) {
fp8_marlin::marlin_mm_f16i4<nv_bfloat16>(
a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
c.data_ptr<at::BFloat16>(), b_scales.data_ptr<at::BFloat16>(), size_m,
size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size,
dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
gptq_marlin::max_par);
marlin::max_par);
} else {
TORCH_CHECK(false, "fp8_marlin_gemm only supports bfloat16 and float16");
}
Expand Down
269 changes: 269 additions & 0 deletions csrc/quantization/gptq_marlin/awq_marlin_repack.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
#include "marlin.cuh"

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800

namespace marlin {

template <int const num_threads, int const num_bits, bool const has_perm>
__global__ void awq_marlin_repack_kernel(
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
int size_k, int size_n) {}

} // namespace marlin

torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
int64_t size_k, int64_t size_n,
int64_t num_bits) {
TORCH_CHECK_NOT_IMPLEMENTED(
false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0");
return torch::empty({1, 1});
}

#else

namespace marlin {

template <int const num_threads, int const num_bits>
__global__ void awq_marlin_repack_kernel(
uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr,
int size_k, int size_n) {
constexpr int pack_factor = 32 / num_bits;

int k_tiles = size_k / tile_k_size;
int n_tiles = size_n / tile_n_size;
int block_k_tiles = div_ceil(k_tiles, gridDim.x);

int start_k_tile = blockIdx.x * block_k_tiles;
if (start_k_tile >= k_tiles) {
return;
}

int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles);

// Wait until the next thread tile has been loaded to shared memory.
auto wait_for_stage = [&]() {
// We only have `stages - 2` active fetches since we are double buffering
// and can only issue the next fetch when it is guaranteed that the previous
// shared memory load is fully complete (as it may otherwise be
// overwritten).
cp_async_wait<repack_stages - 2>();
__syncthreads();
};

extern __shared__ int4 sh[];

constexpr int tile_n_ints = tile_n_size / pack_factor;

constexpr int stage_n_threads = tile_n_ints / 4;
constexpr int stage_k_threads = tile_k_size;
constexpr int stage_size = stage_k_threads * stage_n_threads;

auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
cp_async_fence();
return;
}

int first_n = n_tile_id * tile_n_size;
int first_n_packed = first_n / pack_factor;

int4* sh_ptr = sh + stage_size * pipe;

if (threadIdx.x < stage_size) {
int k_id = threadIdx.x / stage_n_threads;
int n_id = threadIdx.x % stage_n_threads;

int first_k = k_tile_id * tile_k_size;

cp_async4(&sh_ptr[k_id * stage_n_threads + n_id],
reinterpret_cast<int4 const*>(
&(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) +
first_n_packed + (n_id * 4)])));
}

cp_async_fence();
};

auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) {
if (n_tile_id >= n_tiles) {
return;
}

int warp_id = threadIdx.x / 32;
int th_id = threadIdx.x % 32;

if (warp_id >= 4) {
return;
}

int tc_col = th_id / 4;
int tc_row = (th_id % 4) * 2;

constexpr int tc_offsets[4] = {0, 1, 8, 9};

int cur_n = warp_id * 16 + tc_col;
int cur_n_packed = cur_n / pack_factor;
int cur_n_pos = cur_n % pack_factor;

constexpr int sh_stride = tile_n_ints;
constexpr uint32_t mask = (1 << num_bits) - 1;

int4* sh_stage_ptr = sh + stage_size * pipe;
uint32_t* sh_stage_int_ptr = reinterpret_cast<uint32_t*>(sh_stage_ptr);

// Undo interleaving
int cur_n_pos_unpacked;
if constexpr (num_bits == 4) {
constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7};
cur_n_pos_unpacked = undo_pack[cur_n_pos];
} else {
constexpr int undo_pack[4] = {0, 2, 1, 3};
cur_n_pos_unpacked = undo_pack[cur_n_pos];
}

uint32_t vals[8];
#pragma unroll
for (int i = 0; i < 4; i++) {
int cur_elem = tc_row + tc_offsets[i];

int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem];
int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) +
sh_stride * cur_elem];

vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask;
vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask;
}

constexpr int tile_size = tile_k_size * tile_n_size / pack_factor;
int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size;

// Result of:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
if constexpr (num_bits == 4) {
constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7};

uint32_t res = 0;
#pragma unroll
for (int i = 0; i < 8; i++) {
res |= vals[pack_idx[i]] << (i * 4);
}

out_ptr[out_offset + th_id * 4 + warp_id] = res;

} else {
constexpr int pack_idx[4] = {0, 2, 1, 3};

uint32_t res1 = 0;
uint32_t res2 = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res1 |= vals[pack_idx[i]] << (i * 8);
res2 |= vals[4 + pack_idx[i]] << (i * 8);
}

out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1;
out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2;
}
};

auto start_pipes = [&](int k_tile_id, int n_tile_id) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages - 1; pipe++) {
fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe);
}

wait_for_stage();
};
#pragma unroll
for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) {
int n_tile_id = 0;

start_pipes(k_tile_id, n_tile_id);

while (n_tile_id < n_tiles) {
#pragma unroll
for (int pipe = 0; pipe < repack_stages; pipe++) {
fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id,
n_tile_id + pipe + repack_stages - 1);
repack_tile(pipe, k_tile_id, n_tile_id + pipe);
wait_for_stage();
}
n_tile_id += repack_stages;
}
}
}

} // namespace marlin

#define CALL_IF(NUM_BITS) \
else if (num_bits == NUM_BITS) { \
cudaFuncSetAttribute( \
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
marlin::awq_marlin_repack_kernel<marlin::repack_threads, NUM_BITS> \
<<<blocks, marlin::repack_threads, max_shared_mem, stream>>>( \
b_q_weight_ptr, out_ptr, size_k, size_n); \
}

torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
int64_t size_n, int64_t num_bits) {
// Verify compatibility with marlin tile of 16x64
TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k,
" is not divisible by tile_k_size = ", marlin::tile_k_size);
TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n,
" is not divisible by tile_n_size = ", marlin::tile_n_size);

TORCH_CHECK(num_bits == 4 || num_bits == 8,
"num_bits must be 4 or 8. Got = ", num_bits);
int const pack_factor = 32 / num_bits;

// Verify B
TORCH_CHECK(b_q_weight.size(0) == size_k,
"b_q_weight.size(0) = ", b_q_weight.size(0),
" is not size_k = ", size_k);
TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1),
"Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1),
", size_n = ", size_n, ", pack_factor = ", pack_factor);

// Verify device and strides
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt");

// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight));
auto options = torch::TensorOptions()
.dtype(b_q_weight.dtype())
.device(b_q_weight.device());
torch::Tensor out = torch::empty(
{size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor},
options);

// Get ptrs
uint32_t const* b_q_weight_ptr =
reinterpret_cast<uint32_t const*>(b_q_weight.data_ptr());
uint32_t* out_ptr = reinterpret_cast<uint32_t*>(out.data_ptr());

// Get dev info
int dev = b_q_weight.get_device();
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev);
int blocks;
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev);

int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);

if (false) {
}
CALL_IF(4)
CALL_IF(8)
else {
TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits);
}

return out;
}

#endif
Loading

0 comments on commit 396d92d

Please sign in to comment.