forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Port over CLIPVisionModel for VLMs (vllm-project#5591)
- Loading branch information
Showing
9 changed files
with
269 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
"""Minimal implementation of CLIPVisionModel intended to be only used | ||
within a vision language model.""" | ||
from typing import Optional, Tuple | ||
|
||
import torch | ||
import torch.nn as nn | ||
from transformers import CLIPVisionConfig | ||
from transformers.models.clip.modeling_clip import CLIPAttention | ||
|
||
from vllm.model_executor.layers.activation import get_act_fn | ||
from vllm.model_executor.layers.linear import (ColumnParallelLinear, | ||
RowParallelLinear) | ||
from vllm.model_executor.layers.quantization.base_config import ( | ||
QuantizationConfig) | ||
|
||
|
||
def get_clip_num_patches(image_size: int, patch_size: int) -> int: | ||
assert image_size % patch_size == 0 | ||
return (image_size // patch_size)**2 | ||
|
||
|
||
# Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/clip/modeling_clip.py#L164 # noqa | ||
class CLIPVisionEmbeddings(nn.Module): | ||
|
||
def __init__(self, config: CLIPVisionConfig): | ||
super().__init__() | ||
self.config = config | ||
self.embed_dim = config.hidden_size | ||
self.image_size = config.image_size | ||
self.patch_size = config.patch_size | ||
|
||
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | ||
|
||
self.patch_embedding = nn.Conv2d( | ||
in_channels=config.num_channels, | ||
out_channels=self.embed_dim, | ||
kernel_size=self.patch_size, | ||
stride=self.patch_size, | ||
bias=False, | ||
) | ||
|
||
self.num_patches = get_clip_num_patches(self.image_size, | ||
self.patch_size) | ||
self.num_positions = self.num_patches + 1 | ||
self.position_embedding = nn.Embedding(self.num_positions, | ||
self.embed_dim) | ||
self.register_buffer("position_ids", | ||
torch.arange(self.num_positions).expand((1, -1)), | ||
persistent=False) | ||
|
||
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | ||
batch_size = pixel_values.shape[0] | ||
target_dtype = self.patch_embedding.weight.dtype | ||
patch_embeds = self.patch_embedding(pixel_values.to( | ||
dtype=target_dtype)) # shape = [*, width, grid, grid] | ||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | ||
|
||
class_embeds = self.class_embedding.expand(batch_size, 1, -1) | ||
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | ||
embeddings = embeddings + self.position_embedding(self.position_ids) | ||
|
||
return embeddings | ||
|
||
|
||
class CLIPMLP(nn.Module): | ||
|
||
def __init__(self, | ||
config: CLIPVisionConfig, | ||
quant_config: Optional[QuantizationConfig] = None): | ||
super().__init__() | ||
self.config = config | ||
self.activation_fn = get_act_fn(config.hidden_act) | ||
self.fc1 = ColumnParallelLinear(config.hidden_size, | ||
config.intermediate_size, | ||
bias=True, | ||
quant_config=quant_config) | ||
self.fc2 = RowParallelLinear(config.intermediate_size, | ||
config.hidden_size, | ||
bias=True, | ||
quant_config=quant_config) | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | ||
hidden_states, _ = self.fc1(hidden_states) | ||
hidden_states = self.activation_fn(hidden_states) | ||
hidden_states, _ = self.fc2(hidden_states) | ||
|
||
return hidden_states | ||
|
||
|
||
class CLIPEncoderLayer(nn.Module): | ||
|
||
def __init__(self, | ||
config: CLIPVisionConfig, | ||
quant_config: Optional[QuantizationConfig] = None): | ||
super().__init__() | ||
|
||
self.self_attn = CLIPAttention(config) | ||
self.layer_norm1 = nn.LayerNorm(config.hidden_size, | ||
eps=config.layer_norm_eps) | ||
self.mlp = CLIPMLP(config, quant_config=quant_config) | ||
self.layer_norm2 = nn.LayerNorm(config.hidden_size, | ||
eps=config.layer_norm_eps) | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: | ||
|
||
residual = hidden_states | ||
|
||
hidden_states = self.layer_norm1(hidden_states) | ||
hidden_states, _ = self.self_attn(hidden_states=hidden_states) | ||
hidden_states = residual + hidden_states | ||
|
||
residual = hidden_states | ||
hidden_states = self.layer_norm2(hidden_states) | ||
hidden_states = self.mlp(hidden_states) | ||
hidden_states = residual + hidden_states | ||
|
||
return hidden_states | ||
|
||
|
||
class CLIPEncoder(nn.Module): | ||
""" | ||
Transformer encoder consisting of `config.num_hidden_layers` self | ||
attention layers. Each layer is a [`CLIPEncoderLayer`]. | ||
Args: | ||
config: CLIPConfig | ||
""" | ||
|
||
def __init__(self, | ||
config: CLIPVisionConfig, | ||
quant_config: Optional[QuantizationConfig] = None): | ||
super().__init__() | ||
self.config = config | ||
self.layers = nn.ModuleList([ | ||
CLIPEncoderLayer(config=config, quant_config=quant_config) | ||
for _ in range(config.num_hidden_layers) | ||
]) | ||
|
||
def forward(self, | ||
inputs_embeds: torch.Tensor, | ||
vision_feature_layer: int = -1): | ||
|
||
# Encoder forward pass only up to the required layer | ||
num_layer = len(self.layers) + vision_feature_layer + 1 | ||
hidden_states = inputs_embeds | ||
for encoder_layer in self.layers[:num_layer]: | ||
hidden_states = encoder_layer(hidden_states) | ||
|
||
return hidden_states | ||
|
||
|
||
class CLIPVisionTransformer(nn.Module): | ||
|
||
def __init__(self, | ||
config: CLIPVisionConfig, | ||
quant_config: Optional[QuantizationConfig] = None): | ||
super().__init__() | ||
self.config = config | ||
embed_dim = config.hidden_size | ||
|
||
self.embeddings = CLIPVisionEmbeddings(config) | ||
|
||
# NOTE: This typo of "layrnorm" is not fixed on purpose to match | ||
# the original transformers code and name of the model weights. | ||
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | ||
self.encoder = CLIPEncoder(config=config, quant_config=quant_config) | ||
|
||
def forward( | ||
self, | ||
pixel_values: torch.Tensor, | ||
vision_feature_layer: int = -1, | ||
) -> torch.Tensor: | ||
|
||
hidden_states = self.embeddings(pixel_values) | ||
hidden_states = self.pre_layrnorm(hidden_states) | ||
hidden_states = self.encoder(inputs_embeds=hidden_states, | ||
vision_feature_layer=vision_feature_layer) | ||
|
||
return hidden_states | ||
|
||
|
||
class CLIPVisionModel(nn.Module): | ||
|
||
config_class = CLIPVisionConfig | ||
main_input_name = "pixel_values" | ||
|
||
def __init__(self, | ||
config: CLIPVisionConfig, | ||
quant_config: Optional[QuantizationConfig] = None): | ||
super().__init__() | ||
self.vision_model = CLIPVisionTransformer(config=config, | ||
quant_config=quant_config) | ||
|
||
def forward(self, | ||
pixel_values: Optional[torch.Tensor] = None, | ||
vision_feature_layer: int = -1): | ||
|
||
return self.vision_model(pixel_values=pixel_values, | ||
vision_feature_layer=vision_feature_layer) | ||
|
||
@property | ||
def device(self): | ||
return next(self.parameters()).device |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.