Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for GPT-J #2041

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
313 changes: 313 additions & 0 deletions python/sglang/srt/models/gptj.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
# Adapted from vLLM's GPT-J implementation for SGLang
# Original Authors: The vLLM team and HuggingFace Team
# License: Apache License, Version 2.0

from typing import Iterable, List, Optional, Tuple

import torch
from torch import nn
from transformers import GPTJConfig

print(" ** This model is being loaded from built-in source at IR2-project **")
# from sglang.srt.layers.activation import get_act_fn
from vllm.model_executor.layers.activation import get_act_fn
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)

from sglang.srt.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention

# from sglang.srt.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch


class GPTJAttention(nn.Module):
def __init__(
self,
layer_id: int,
config: GPTJConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads

self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
quant_config=quant_config,
# prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
quant_config=quant_config,
# prefix=f"{prefix}.out_proj",
)

tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size

self.scale = self.head_size**-0.5
assert getattr(config, "rotary", True)
assert config.rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)

self.rotary_emb = get_rope(
self.head_size,
rotary_dim=config.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=False,
)
self.attn = RadixAttention(
self.num_heads,
self.head_size,
scaling=self.scale,
num_kv_heads=self.total_num_heads,
layer_id=layer_id,
)

def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v, forward_batch)
attn_output, _ = self.out_proj(attn_output)
return attn_output


class GPTJMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTJConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.n_embd
self.fc_in = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
# prefix=f"{prefix}.fc_in",
)
self.fc_out = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
# prefix=f"{prefix}.fc_out",
)
self.act = get_act_fn(
config.activation_function, quant_config, intermediate_size
)

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc_out(hidden_states)
return hidden_states


class GPTJBlock(nn.Module):
def __init__(
self,
layer_id: int,
config: GPTJConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
# prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = 4 * config.n_embd if config.n_inner is None else config.n_inner
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

self.attn = GPTJAttention(
layer_id,
config,
cache_config,
quant_config,
# prefix=f"{prefix}.attn",
)
self.mlp = GPTJMLP(
inner_dim,
config,
quant_config,
# prefix=f"{prefix}.mlp",
)

def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
mlp_output = self.mlp(hidden_states)
hidden_states = attn_output + mlp_output + residual
return hidden_states


class GPTJModel(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
# prefix=f"{prefix}.wte",
)
self.h = nn.ModuleList(
[
GPTJBlock(i, config, cache_config, quant_config)
for i in range(config.n_layer)
]
)
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)

for layer in self.h:
hidden_states = layer(
position_ids=position_ids,
hidden_states=hidden_states,
forward_batch=forward_batch,
)

hidden_states = self.ln_f(hidden_states)
return hidden_states


class GPTJForCausalLM(nn.Module):
def __init__(
self,
config: GPTJConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.transformer = GPTJModel(
config, cache_config, quant_config, prefix="transformer"
)
self.lm_head = self.transformer.wte
self.logits_processor = LogitsProcessor(config)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, forward_batch)
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, forward_batch
)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters(remove_duplicate=False))
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]

# for name, loaded_weight in weights:
# if "attn.bias" in name or "attn.masked_bias" in name:
# continue

# if not name.startswith("transformer."):
# name = "transformer." + name

# param = params_dict.get(name)
# if param is None:
# continue

# # Handle weight transposition for Conv1D layers
# conv1d_layers = ["qkv_proj", "out_proj", "fc_in", "fc_out"]
# if any(conv1d_layer in name for conv1d_layer in conv1d_layers):
# if name.endswith(".weight"):
# loaded_weight = loaded_weight.t()

# weight_loader = getattr(param, "weight_loader",
# default_weight_loader)
# weight_loader(param, loaded_weight)

for name, loaded_weight in weights:
if "attn.bias" in name or "attn.masked_bias" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)


EntryClass = GPTJForCausalLM
1 change: 1 addition & 0 deletions test/srt/models/test_generation_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ class ModelCase:
ModelCase("allenai/OLMo-1B-0724-hf", decode_tolerance=8e-2, skip_long_prompt=True),
ModelCase("THUDM/glm-4-9b-chat"),
ModelCase("openai-community/gpt2"),
ModelCase("EleutherAI/gpt-j-6B"),
]

TORCH_DTYPES = [torch.float16]
Expand Down
Loading