Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add OLMo2 model. #2233

Merged
merged 1 commit into from
Nov 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
392 changes: 392 additions & 0 deletions python/sglang/srt/models/olmo2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,392 @@
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

# Adapted from
# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/olmo2.py
"""Inference-only OLMo2 model compatible with HuggingFace weights."""
from functools import partial
from typing import Iterable, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.model_loader.weight_utils import default_weight_loader

from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import make_layers


class Olmo2Attention(nn.Module):
"""
This is the attention block where the output is computed as
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads

assert self.hidden_size % self.total_num_heads == 0
assert self.total_num_heads % tp_size == 0

self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = self.config.num_key_value_heads

if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)

self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta

# Attention input projection. Projects x -> (q, k, v)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
bias=config.attention_bias,
)
self.tp_rank = get_tensor_model_parallel_rank()

self.k_norm = RMSNorm(
self.total_num_kv_heads * self.head_dim,
eps=self.config.rms_norm_eps,
)
self.q_norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
# Rotary embeddings.
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
)
self.scaling = self.head_dim**-0.5
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
)

# Attention output projection.
self.o_proj = RowParallelLinear(
self.head_dim * self.total_num_heads,
self.hidden_size,
bias=config.attention_bias,
)

def _apply_qk_norm(
self, q: torch.Tensor, k: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.tp_size > 1:
q = tensor_model_parallel_all_gather(q.contiguous())
k = tensor_model_parallel_all_gather(k.contiguous())
q = self.q_norm.forward_native(q)
k = self.k_norm.forward_native(k)
if self.tp_size > 1:
splitter = partial(split_tensor_along_last_dim, num_partitions=self.tp_size)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
return q, k

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output


class Olmo2MLP(nn.Module):
"""
This is the MLP block where the output is computed as
``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size

# Feed-forward input projection.
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)

# Activation function.
self.act_fn = SiluAndMul()

# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)

def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x


class Olmo2DecoderLayer(nn.Module):
"""
This is a typical transformer block where the output is
computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""

def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
# Attention block.
self.self_attn = Olmo2Attention(config, layer_id, quant_config)

# MLP block.
self.mlp = Olmo2MLP(config, quant_config)

# RMSNorm
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)

self.post_feedforward_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)

def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
# Attention block.
residual = hidden_states
hidden_states = self.self_attn(positions, hidden_states, forward_batch)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = hidden_states + residual

# MLP block.
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states


class Olmo2Model(nn.Module):

def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config

self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: Olmo2DecoderLayer(
layer_id=idx,
config=config,
quant_config=quant_config,
),
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
"""
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)

if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds

# Apply blocks one-by-one.
for layer_id, decoder_layer in enumerate(self.layers):
# shape: (batch_size, seq_len, d_model)
hidden_states = decoder_layer(
positions,
hidden_states,
forward_batch,
)

# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
hidden_states = self.norm(hidden_states)
return hidden_states


class Olmo2ForCausalLM(nn.Module):
"""
Extremely barebones HF model wrapper.
"""

def __init__(
self,
config: PretrainedConfig,
cache_config=None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.model = Olmo2Model(config, quant_config)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
forward_batch=forward_batch,
input_embeds=input_embeds,
)
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, forward_batch
)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)


EntryClass = Olmo2ForCausalLM
Loading
Loading