Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update readme #568

Merged
merged 4 commits into from
Jun 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 29 additions & 18 deletions benchmark/latency_throughput/README.md
Original file line number Diff line number Diff line change
@@ -1,42 +1,53 @@
### Download data

# Benchmark Latency and Throughput

## SGLang

### Launch server
```
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```
Install [FlashInfer](https://github.com/flashinfer-ai/flashinfer) if you want it to be enabled.

### Benchmark one batch

### SGLang
```
# use native attention
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --tp 1 --port 30000
# use flashinfer attention: --enable-flashinfer
# disable RadixAttention: --disable-radix-cache
python3 bench_one.py
python3 bench_one.py --batch-size 64
```

### Benchmark online serving with many requests

```
# run ShareGPT
python3 bench_throughput.py --backend srt --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 --port 30000
python3 bench_serving.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256
```

### Benchmark online serving on the ShareGPT dataset

#### Download data
```
# run synthetic
python3 bench_throughput.py --backend srt --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

#### Run ShareGPT
```
python3 bench_throughput.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```

## Other baselines

### vLLM
```
python3 -m vllm.entrypoints.api_server --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel 1 --disable-log-requests --swap-space 16 --port 21000
```

```
# run ShareGPT
python3 bench_throughput.py --backend vllm --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 --port 21000
# run synthetic
python3 bench_throughput.py --backend vllm --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256
```

```
# run synthetic
python3 bench_throughput.py --backend vllm --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
# run ShareGPT
python3 bench_throughput.py --backend vllm --port 21000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```


Expand All @@ -46,5 +57,5 @@ python -m lightllm.server.api_server --model_dir ~/model_weights/Llama-2-7b-chat
```

```
python3 bench_throughput.py --backend lightllm --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 --port 22000
```
python3 bench_throughput.py --backend lightllm --port 22000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10
```
Original file line number Diff line number Diff line change
Expand Up @@ -92,4 +92,4 @@
print(ret)

speed = args.batch_size * max_new_tokens / latency
print(f"latency: {latency:.2f} s, speed: {speed:.2f} token/s")
print(f"latency: {latency:.2f} s, speed: {speed:.2f} token/s")
Original file line number Diff line number Diff line change
Expand Up @@ -296,23 +296,27 @@ def main(args: argparse.Namespace):
)
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")

# Compute the latency statistics.
# Compute the statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean(
[
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
]
)
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean(
[latency / output_len for _, output_len, latency in REQUEST_LATENCY]
)
print("Average latency per output token: " f"{avg_per_output_token_latency:.2f} s")
decoding_throughput = np.sum([
output_len for _, output_len, _ in REQUEST_LATENCY]) / benchmark_time

print(f"Total time: {benchmark_time:.2f} s")
print(f"Request throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
print(f"Decoding throughput: {decoding_throughput:.2f} token/s")
print(f"Average latency: {avg_latency:.2f} s")
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
print(f"Average latency per output token: {avg_per_output_token_latency:.2f} s")


if __name__ == "__main__":
Expand Down