Skip to content

shawntsai/house-prices-advanced-regression-techniques

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

house-prices-advanced-regression-techniques

###Kaggle house price

This package provide a tutorial for data visualization, data analysis, simple feature engineering and some deep learning techniques.

environment set up

$pip install virtualenv

$virtualenv ENV

$source bin/activate

$pip install -r /src/requirements.txt

view data discription.txt for feature discription

pynb file for jupyter notebook tutorial file

generate prediction for test.csv:

$python final.py

K-folds cross validation to valuate results locally

$python blend.py

####Dependencies:

  • theano
  • kasagne
  • nolearn
  • scikit-learn
  • pandas

####Data Handling

  • Importing Data with Pandas
  • Cleaning Data
  • Exploring Data through Visualizations with Matplotlib, seaborn

####Data Analysis

  • Supervised Machine learning Techniques: + lasso + elastic net + random forest + extreme gradient boosting + MLP + simple one layer encoding

Releases

No releases published

Packages

No packages published