Official PyTorch implementation of the paper Self-Supervised Low-Light Image Enhancement Using Discrepant Untrained Network Priors published in IEEE TCSVT 2022.
Paper | Supplementary material
- Create conda environment
conda create --name drp python=3.6
conda activate drp
- Clone repo
git clone https://github.com/sherrycattt/discrepant-untrained-nn-priors.git
- Install dependencies
cd discrepant-untrained-nn-priors
pip install -r requirements.txt
Specify the input path input_path
, the output directory output_dir
, and other hyper-parameters. Then run
CUDA_VISIBLE_DEVICES=0 python main.py --input_path images/input2.png --output_dir output --num_iter 15000 --show_every 1000 --drop_tau 0.1
If you find our work useful in your research or publication, please cite it:
@Article{liang2022selfsupervised,
author = {Liang, Jinxiu and Xu, Yong and Quan, Yuhui and Shi, Boxin and Ji, Hui},
title = {Self-Supervised Low-Light Image Enhancement Using Discrepant Untrained Network Priors},
journal = {IEEE Transactions on Circuits and Systems for Video Technology},
year = {2022},
pages = {Early Access},
issn = {1558-2205},
doi = {10.1109/TCSVT.2022.3181781},
}
The code is heavily borrowed from DoubleDIP.
The code is provided as-is for academic use only and without any guarantees. Please contact the author to report any bugs.