Skip to content

Java 8+ annotation processor for auto generation of data access layer for Spring Boot applications using spring-data-jpa

License

Notifications You must be signed in to change notification settings

sindaryn/datafi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Datafi

Datafi auto-generates the data access layer for Spring-Data-Jpa applications.

  • No more boilerplate JPaRepository interfaces.
  • Custom Jpa resolvers with a few simple field-level annotations.
  • Get all the features of Jpa for your entire data model, without writing a single line of data layer code.

Table of Contents

Installation

Datafi is available on maven central:

<dependency>
    <groupId>org.sindaryn</groupId>
        <artifactId>datafi</artifactId>
    <version>0.0.2</version>
</dependency>

Requirements

  1. All entities must have a public getId() method.

Hello World

Datafi autogenerates Jpa repositories for all data model entities annotated with @Entity and / or @Table annotation(s).
To make use of this, @Autowire the DataManager<T> bean into your code, as follows:

Domain model

  
@Entity  
@PersistableEntity  
public class Person{  
     @Id 
     private String id = UUID.randomUUID().toString(); 
     private String name; 
     private Integer age; 
     // getters & setters, etc...
}  

Service layer

Now any JpaRepository or JpaSpecificationExecutor method can be called. For example: findById(id)

@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager;     
     
     public Person getPersonById(String id){  
     return personDataManager.findById(id).orElse(...); 
     }
}  

StandardPersistableEntity

If you don't wan't to worry about assigning @Id or @Version column. the StandardPersistableEntity @MappedSuperclass can be extended. For example:

Domain model

@Entity  
public class Person extends StandardPersistableEntity {  
    private String name; 
    private Integer age; 
    // getters & setters, etc...
}  

IdFactory

Alternately, the unix timestamp based Long IdFactory.getNextId() static method can be employed. For example:

@Entity  
public class Person{  
     @Id 
     private Long id = IdFactory.getNextId(); 
     private String name; 
     private Integer age; 
     // getters & setters, etc...
}  

Archivability

Overview

Sometimes when it comes to removing records from a database, the choice is made to mark the relevant records as archived, as oppposed to actually deleting them from the database. Datafi supports this out of the box with the Archivable interface and ArchivableDataManager<T extends Archivable> bean. The Archivable interface requires both a getter and setter for a Boolean isArchived field. Once the interface has been implemented by an entity, the ArchivableDataManager<T extends Archivable> bean can be autowired for that entity. ArchivableDataManager<T extends Archivable> extends the functionality of DataManager<T> with the following four methods:

  1. public T archive(T input): Finds the input record by id, and marks it as archived.
  2. public T deArchive(T input): The opposite of 1.
  3. public List<T> archiveCollection(Collection<T> input): 1 in plural.
  4. public List<T> deArchiveCollection(Collection<T> input): 2 in plural.

Observe the following example:

Domain model
@Entity
public class Person implements Archivable{  
     @Id 
     private String id = UUID.randomUUID().toString(); 
	 private Boolean isArchived = false; //use Boolean, not boolean
	 @Override
	 public Boolean getIsArchived(){
	 		return this.isArchived;
		}
	 @Override
	 public Boolean setIsArchived(Boolean isArchived){
	 		this.isArchived = isArchived;
		}
     //...
}  

Side note: In practice, manual coding of getters and setters is unnecessary, lombok can be used to auto generate them.

Example Service Layer
@Service  
public class PersonService{  

     @Autowired 
     private ArchivableDataManager<Person> archivablePersonDataManager; 
	 
	 public Person archivePerson(Person toArchive){
	 	return archivablePersonDataManager.archive(toArchive);
	 }
	 
	 public Person deArchivePerson(Person toDeArchive){
	 	return archivablePersonDataManager.deArchive(toDeArchive);
	 }
	 
	  public List<Person> archivePersons(List<Person> toArchive){
	 	return archivablePersonDataManager.archiveCollection(toArchive);
	 }
	 
	 public List<Person> deArchivePersons(List<Person> toDeArchive){
	 	return archivablePersonDataManager.deArchiveCollection(toDeArchive);
	 }
}  

Custom resolvers

@GetBy, and @GetAllBy

In addition to the standard JpaRepository methods included by default, you can annotate any field with @GetBy and / or @GetAllBy annotation, and this will generate a corresponding findBy...(value), or findAllBy...In(List<...> values). For example:

Domain model
@Entity
public class Person{  
     @Id 
     private String id = UUID.randomUUID().toString(); 
     @GetBy 
     private String name;
     @GetAllBy 
     private Integer age; 
     @GetBy @GetAllBy 
     private String address; 
     // getters & setters, etc..
}  

As can be observed, a field can have both annotations at the same time.

Example Service Layer
@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager; 
     
     /* corresponds to @GetBy private String name; 
        Returns a list of persons with the (same) given name */
     public List<Person> getPersonsByName(String name){ 
     return personDataManager.getBy("name", name).orElse(...); 
     }     
     
     //corresponds to @GetAllBy private Integer age; 
     public List<Person> getAllPersonsByAge(List<Integer> ages){ 
        return personDataManager.getAllBy("age", ages).orElse(...); 
         
     }     
     
     //the following two methods correspond to @GetBy @GetAllBy private String address;  
     public List<Person> getPersonsByAddress(String address){ 
        return personDataManager.getBy("address", address).orElse(...);    
     }  
     
     public List<Person> getAllPersonsByAddressIn(List<String> addresses){  
        return personDataManager.getAll##### Domain model  
@Entity
public class Person{  
     @Id 
     private String id = UUID.randomUUID().toString(); 
     @GetBy 
     private String name;
     @GetAllBy 
     private Integer age; 
     @GetBy @GetAllBy 
     private String address; 
     // getters & setters, etc..
}  

As can be observed, a field can have both annotations at the same time.

Example Service Layer
@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager; 
     
     /* corresponds to @GetBy private String name; 
        Returns a list of persons with the (same) given name */
     public List<Person> getPersonsByName(String name){ 
     return personDataManager.getBy("name", name).orElse(...); 
     }     
     
     //corresponds to @GetAllBy private Integer age; 
     public List<Person> getAllPersonsByAge(List<Integer> ages){ 
        return personDataManager.getAllBy("age", ages).orElse(...); 
         
     }     
     
     //the following two methods correspond to @GetBy @GetAllBy private String address;  
     public List<Person> getPersonsByAddress(String address){ 
        return personDataManager.getBy("address", address).orElse(...);    
     }  
     
     public List<Person> getAllPersonsByAddressIn(List<String> addresses){  
        return personDataManager.getAllBy("address", addresses).orElse(...);
     }
}  
```By("address", addresses).orElse(...);
     }
}  

@GetByUnique

As can be observed, the return type of both of the previous methods is a list. That's because there is no gaurantee of uniqueness with regards to a field simply because it's been annotated with @GetBy and / or @GetAllBy. This is where @GetByUnique differs; it takes a unique value argument, and returns a single corresponding entity. In order for this to be valid syntax, any field annotated with the @GetByUnique annotation must also be annotated with @Column(unique = true). If a field is annotated with only @GetByUnique but not @Column(unique = true), a compilation error will occur. The following is an illustrative example:

Domain model
@Entity
public class Person{  

     @Id 
     private String id = UUID.randomUUID().toString(); 
     
     @GetByUnique
     @Column(unique = true) 
     private String name;
    //...
}  
Example Service Layer
@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager; 
     
     /* 
     corresponds to 
     @GetByUnique 
     private String name; 
     Returns a single person with the given name
     */ 
     public Person getPersonByUniqueName(String name){ 
        return personDataManager.getByUnique( "name", name).orElse(...); 
     } 
}  

Free text search

Datafi comes with non case sensitive free text - or "Fuzzy" search out of the box. To make use of this, either one or more String typed fields can be annotated with @FuzzySearchBy, or the class itself can be annotated with @FuzzySearchByFields({"field1", "field2", etc...}). Then the fuzzySearchBy(String searchTerm, args...) method in the respective class' DataManager can be called.

Observe the following example:

Domain model
@Entity
//@FuzzySearchByFields({"name", "email"}) - this is equivalent to the field level annotations below
public class Person{  

     @Id 
     private String id = UUID.randomUUID().toString(); 
     
     @FuzzySearchBy
     private String name;
	 @FuzzySearchBy
	 private String email;
    //...
}  
Example Service Layer
@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager; 
     
     public List<Person> fuzzySearchPeople(String searchTerm){ 
        return personDataManager.fuzzySearch(searchTerm); 
     } 
}  

fuzzySearch does not return a list of all matching database records, but rather the contents of a Page object. This means that the search results are paginated by definition. Because of this, fuzzySearch takes in the 2 optional arguments int offset and int limit - in that order. These are "optional" in the sense that if not specified, the offset and limit will default to 0 and 50 respectively. An additional 2 optional arguments are String sortBy and Sort.Direction sortDirection - in that order. String sortBy specifies the name of a field within the given entity by which to apply the sort. If no matching field is found an IllegalArgumentException is thrown. Sort.Direction sortDirection determines the ordering strategy. If not specified it defaults to ascending order (ASC).

@WithResolver(...)

Thus far, the range of functionality required for most standard data layer operations has been covered. However, there are use cases where a more complex approach is required. One way in which JpaRepository addresses this need with the @Query annotation, with which the developer can take full advantage of the full power of either JPQL, or whichever native dialect is in use (by setting @Query(..., nativeQuery = true, ...)). Datafi addresses this need as well, by enabling the developer to define their own custom query based resolver methods, using the @WithResolver(...) as a repeatable class level annotation. See the following example:

Domain model
@Entity
@WithResolver(name = "getByNameOrAddress", where = "p.name = :name OR p.address = :address", args = {"name", "address"})  
public class Person {  

     @Id 
     private String id = UUID.randomUUID().toString(); 
     
     private String name; 
     
     private Integer age; 
     
     private String address;
}  
Data access layer

After running the compiler, the following code is generated:

@Repository  
public interface PersonDao extends GenericDao<String, Person> {  
     @Query("SELECT p FROM Person p WHERE p.name = :name OR p.address = :address") 
     List<Person> getByNameOrAddress(@Param("name") String name, @Param("address") String address);
}  

Important note: The SQL placeholder is always the first character of the entity name, in lowercase. In the above example, it's the lowercase letter "p". ...

Example Service Layer
@Service  
public class PersonService{  
     @Autowired 
     private DataManager<Person> personDataManager;    
     public List<Person> getPersonsByNameOrAddress(String name, String address){  
     return personDataManager.selectByResolver(Person.class, "getByNameOrAddress", name, address); 
     }
}  

Breakdown:

  • The first argument is the class type token for the currently given entity (in this case Person.class).
  • The second argument is the name of the resolver to be called, this is the value that was inputted as @WithResolver(..., name = "getByNameOrAddress", ...) .
  • The third set of arguments are of the same type and order as specified within the annotation - i.e. @WithResolver(..., args = {"name", "address"}, ...).

Syntactic sugar

The @WithResolver(...) annotation comes with the following useful defaults::

  1. if the where argument is left unsassigned, it defaults to placing an AND contional between all of the arguments provided for the args parameter. For example, for the following domain model:

    @Entity  
    @WithResolver(name = "getByIdAndNameAndAddress", args = {"id", name", "address"}) 
    public class Person { 
    @Id private String id = UUID.randomUUID().toString(); 
    private String name; 
    private Integer age; 
    private String address; 
    } 
    

    The resulting data layer code would look as follows:

     @Repository 
     public interface PersonDao extends GenericDao<String, Person> { 
     @Query("SELECT p FROM Person p WHERE p.id = :id AND p.name = :name AND p.address = :address") 
     List<Person> getByIdAndNameAndAddress( @Param("id") String id, @Param("name") String name, @Param("address") String address); } 
    

    This would also happen if "&&&" was explicitly assigned to the where argument.

  2. If "|||" is assigned to the where parameter, an OR conditional is then inserted in between all of the arguments, as is the case in the following example:

    @Entity  
    @WithResolver(name = "getByIdOrNameOrAddress", where = "|||", args = {"id", name", "address"}) 
    public class Person { 
        @Id 
        private String id = UUID.randomUUID().toString(); 
        private String name; 
        private Integer age; 
        private String address; 
    } 
    

    The resulting autogenerated data layer code would then look as follows:

     @Repository 
     public interface PersonDao extends GenericDao<String, Person> { 
         @Query("SELECT p FROM Person p WHERE p.id = :id OR p.name = :name OR p.address = :address") 
         List<Person> getByIdOrNameOrAddress( @Param("id") String id, @Param("name") String name, @Param("address") String address); 
     } 
    

    Just to clarify - the method name assigned to the name parameter is completely arbitrary. Just make sure to remember it for later use via DataManager<T>.

cascadedUpdate

One issue which requires attention when designing a data model is cascading. Datafi simplifes this by offering out-of-the-box, built in application layer cascading when applying update operations. See illustration:

@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager;    
     
     public Person updatePerson(Person toUpdate, Person objectWithUpdatedValues){  
        return personDataManager.cascadedUpdate(toUpdate,  objectWithUpdatedValues);
     }
     
}  

Breakdown:

  • The first argument is the Person instance we wish to update.

  • The second argument is an instance of Person containing the updated values to be assigned to the corresponding fields within the first Person instance. All of the it's other fields must be null.

    Important note: This method skips over any iterables.

cascadeUpdateCollection

cascadeUpdateCollection offers analogous functionality as cascadeUpdate, in plural. For Example:

@Service  
public class PersonService{  

     @Autowired 
     private DataManager<Person> personDataManager; 
     
     //obviously, these two lists must correspond in length 
     public List<Person> updatePersons(List<Person> toUpdate, List<Person> objectsWithUpdatedValues){ 
        return personDataManager.cascadeUpdateCollection(toUpdate, objectsWithUpdatedValues); 
     }
     
}  

Excluding fields from cascadeUpdate(...) operations

Field(s) to be excluded from cascadeUpdate operations should be annotated as @NonApiUpdatable. Alternately, if there are many such fields in a class and the developer would rather avoid the field-level annotational clutter, the class itself can be annotated with @NonApiUpdatables, with the relevant field names passsed as arguments. For example, the following:

@Entity  
public class Person { 

    @Id 
    private String id = UUID.randomUUID().toString();
    
    @NonApiUpdatable 
    private String name; 
    
    @NonApiUpdatable 
    private Integer age; 
    
    private String address; 
    
}

is equivalent to:

@Entity  
@NonApiUpdatables({"name", "age"}) 
public class Person { 

   @Id 
   private String id = UUID.randomUUID().toString(); 
   
   private String name; 
   
   private Integer age; 
   
   private String address; 
   
} 

Mutating the state of foreign key Iterables

As metioned above, cascadeUpdate operations skip over iterable type fields. This is due to the fact that collection mutations involve adding or removing elements to or from the collection - not mutations on the collection container itself. Therefore, DataManager<T> includes the following methods to help with adding to, and removing from, foreign key collections.

  1. public<HasTs> List<T> addNewToCollectionIn(HasTs toAddTo, String fieldName, List<T> toAdd)
    This method takes in three arguments, while making internal use of the application level cascadedUpdate above in order to propogate the relevant state changes:
    • HasTs toAddTo - The entity containing the foriegn key collection of "Ts" (The type of entities referenced in the collection) to which to add.
    • String fieldName - The field name of the foreign key collection (i.e. for private Set<Person> friends;, it'd be "friends").
    • List<T> toAdd - The entities to add to the collection.
  2. public<HasTs> List<T> attachExistingToCollectionIn(HasTs toAddTo, String fieldName, List<T> toAttach) Similar to the previous method but for one crucial difference; it ensures the entities to be attached (not added from scratch) are indeed already present within their respective table within the database.

That's all for now, happy coding!

License

Apache 2.0

About

Java 8+ annotation processor for auto generation of data access layer for Spring Boot applications using spring-data-jpa

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages