This is a ported version of Sōseki question answering (QA) system for AIO2 competition.
Sōseki is an implementation of an end-to-end QA system utilizing Binary Passage Retriever (BPR), an efficient passage retrieval model for a large collection of documents. BPR integrates a learning-to-hash technique into Dense Passage Retriever (DPR) to represent the passage embeddings using compact binary codes rather than continuous vectors. It substantially reduces the memory size without a loss of accuracy when tested on several QA datasets (see the BPR repository for more detail).
This work is based on the original implementation of Sōseki and is provided as one of the baseline systems for AIO2 competition. Using the datasets for cl-tohoku/AIO2_DPR_baseline, the DPR baseline takes 20GB to encode 6.8 million paragraphs from Japanese Wikipedia, while our model takes only 674MB to encode the same set of passages.
You can install the required libraries using pip:
$ pip install -r requirements.txt
Note: If you are using a GPU Environment different from CUDA 10.2, you may need to reinstall PyTorch according to the official documentation.
Before you start, you need to download the datasets available at
cl-tohoku/AIO2_DPR_baseline by running the download script scripts/download_data.sh
.
$ bash scripts/download_data.sh <DATASET_DIR>
In the following experiments, we used a server with 4 GeForce RTX 2080 GPUs, each with 11GB of memory.
1. Build passage database
$ python build_passage_db.py \
--passage_file <DATASET_DIR>/wiki/jawiki-20210503-paragraphs.tsv.gz \
--db_file <WORK_DIR>/passages.db \
--db_map_size 10000000000 \
--skip_header
2. Train a biencoder
$ python train_biencoder.py \
--train_file <DATASET_DIR>/aio/abc_01-12_retriever.json.gz \
--dev_file <DATASET_DIR>/aio/aio_01_dev_retriever.json.gz \
--output_dir <WORK_DIR>/biencoder \
--max_question_length 128 \
--max_passage_length 256 \
--num_negative_passages 1 \
--shuffle_hard_negative_passages \
--shuffle_normal_negative_passages \
--base_pretrained_model cl-tohoku/bert-base-japanese-v2 \
--binary \
--train_batch_size 8 \
--eval_batch_size 8 \
--learning_rate 1e-5 \
--warmup_proportion 0.1 \
--gradient_clip_val 2.0 \
--max_epochs 20 \
--gpus 4 \
--precision 16 \
--accelerator ddp
3. Build passage embeddings
$ python build_passage_embeddings.py \
--biencoder_file <WORK_DIR>/biencoder/lightning_logs/version_0/checkpoints/last.ckpt \
--passage_db_file <WORK_DIR>/passages.db \
--output_file <WORK_DIR>/passage_embeddings.idx \
--max_passage_length 256 \
--batch_size 2048 \
--device_ids 0,1,2,3
4. Evaluate the retriever and create datasets for reader
$ mkdir <WORK_DIR>/reader_data
$ python evaluate_retriever.py \
--biencoder_file <WORK_DIR>/biencoder/lightning_logs/version_0/checkpoints/last.ckpt \
--passage_db_file <WORK_DIR>/passages.db \
--passage_embeddings_file <WORK_DIR>/passage_embeddings.idx \
--qa_file <DATASET_DIR>/aio/abc_01-12_retriever.tsv \
--output_file <WORK_DIR>/reader_data/abc_01-12.jsonl \
--batch_size 64 \
--max_question_length 128 \
--top_k 1,2,5,10,20,50,100 \
--binary \
--binary_k 2048 \
--answer_match_type simple_nfkc \
--include_title_in_passage \
--device_ids 0,1,2,3
# The result should be logged as follows:
# Recall at 1: 0.6041 (10714/17735)
# Recall at 2: 0.7123 (12633/17735)
# Recall at 5: 0.8030 (14242/17735)
# Recall at 10: 0.8415 (14924/17735)
# Recall at 20: 0.8686 (15404/17735)
# Recall at 50: 0.8937 (15849/17735)
# Recall at 100: 0.9064 (16075/17735)
$ python evaluate_retriever.py \
--biencoder_file <WORK_DIR>/biencoder/lightning_logs/version_0/checkpoints/last.ckpt \
--passage_db_file <WORK_DIR>/passages.db \
--passage_embeddings_file <WORK_DIR>/passage_embeddings.idx \
--qa_file <DATASET_DIR>/aio/aio_01_dev_retriever.tsv \
--output_file <WORK_DIR>/reader_data/aio_01_dev.jsonl \
--batch_size 64 \
--max_question_length 128 \
--top_k 1,2,5,10,20,50,100 \
--binary \
--binary_k 2048 \
--answer_match_type simple_nfkc \
--include_title_in_passage \
--device_ids 0,1,2,3
# The result should be logged as follows:
# Recall at 1: 0.6160 (1227/1992)
# Recall at 2: 0.7279 (1450/1992)
# Recall at 5: 0.8308 (1655/1992)
# Recall at 10: 0.8740 (1741/1992)
# Recall at 20: 0.9096 (1812/1992)
# Recall at 50: 0.9458 (1884/1992)
# Recall at 100: 0.9639 (1920/1992)
$ python evaluate_retriever.py \
--biencoder_file <WORK_DIR>/biencoder/lightning_logs/version_0/checkpoints/last.ckpt \
--passage_db_file <WORK_DIR>/passages.db \
--passage_embeddings_file <WORK_DIR>/passage_embeddings.idx \
--qa_file <DATASET_DIR>/aio/aio_01_test_retriever.tsv \
--output_file <WORK_DIR>/reader_data/aio_01_test.jsonl \
--batch_size 64 \
--max_question_length 128 \
--top_k 1,2,5,10,20,50,100 \
--binary \
--binary_k 2048 \
--answer_match_type simple_nfkc \
--include_title_in_passage \
--device_ids 0,1,2,3
# The result should be logged as follows:
# Recall at 1: 0.5875 (1175/2000)
# Recall at 2: 0.7055 (1411/2000)
# Recall at 5: 0.8140 (1628/2000)
# Recall at 10: 0.8675 (1735/2000)
# Recall at 20: 0.9020 (1804/2000)
# Recall at 50: 0.9370 (1874/2000)
# Recall at 100: 0.9580 (1916/2000)
5. Train a reader
$ python train_reader.py \
--train_file <WORK_DIR>/reader_data/abc_01-12.jsonl \
--dev_file <WORK_DIR>/reader_data/aio_01_dev.jsonl \
--output_dir <WORK_DIR>/reader \
--train_num_passages 16 \
--eval_num_passages 50 \
--max_input_length 384 \
--include_title_in_passage \
--shuffle_positive_passage \
--shuffle_negative_passage \
--num_dataloader_workers 1 \
--base_pretrained_model cl-tohoku/bert-base-japanese-v2 \
--answer_normalization_type simple_nfkc \
--train_batch_size 1 \
--eval_batch_size 2 \
--learning_rate 1e-5 \
--warmup_proportion 0.1 \
--accumulate_grad_batches 4 \
--gradient_clip_val 2.0 \
--max_epochs 10 \
--gpus 4 \
--precision 16 \
--accelerator ddp
6. Evaluate the reader
$ python evaluate_reader.py \
--reader_file <WORK_DIR>/reader/lightning_logs/version_0/checkpoints/best.ckpt \
--test_file <WORK_DIR>/reader_data/aio_01_dev.jsonl \
--test_num_passages 100 \
--test_max_load_passages 100 \
--test_batch_size 4 \
--gpus 4 \
--accelerator ddp
# The result should be printed as follows:
# --------------------------------------------------------------------------------
# DATALOADER:0 TEST RESULTS
# {'test_answer_accuracy': 0.6882529854774475,
# 'test_classifier_precision': 0.8012048006057739}
# --------------------------------------------------------------------------------
$ python evaluate_reader.py \
--reader_file <WORK_DIR>/reader/lightning_logs/version_0/checkpoints/best.ckpt \
--test_file <WORK_DIR>/reader_data/aio_01_test.jsonl \
--test_num_passages 100 \
--test_max_load_passages 100 \
--test_batch_size 4 \
--gpus 4 \
--accelerator ddp
# The result should be printed as follows:
# --------------------------------------------------------------------------------
# DATALOADER:0 TEST RESULTS
# {'test_answer_accuracy': 0.6915000081062317,
# 'test_classifier_precision': 0.8005000352859497}
# --------------------------------------------------------------------------------
7. Convert the trained models into ONNX format
$ python convert_models_to_onnx.py \
--biencoder_ckpt_file <WORK_DIR>/biencoder/lightning_logs/version_0/checkpoints/last.ckpt \
--reader_ckpt_file <WORK_DIR>/reader/lightning_logs/version_0/checkpoints/best.ckpt \
--output_dir <WORK_DIR>/onnx
1. Copy the models and data files into models/
directory
The files should be placed and renamed as follows:
models
├── passage_embeddings.idx # from <WORK_DIR>/passage_embeddings.idx
├── onnx
│ ├── biencoder_hparams.json # from <WORK_DIR>/onnx/biencoder_hparams.json
│ ├── question_encoder.onnx # from <WORK_DIR>/onnx/question_encoder.onnx
│ ├── reader.onnx # from <WORK_DIR>/onnx/reader.onnx
│ └── reader_hparams.json # from <WORK_DIR>/onnx/reader_hparams.json
└── passages.tsv.gz # from <DATASET_DIR>/wiki/jawiki-20210503-paragraphs.tsv.gz
Note: You do not have to include <WORK_DIR>/onnx/passage_encoder.onnx
in the directory since it is not used in the prediction stage.
2. Build the Docker image
$ docker build -t aio2-soseki-baseline .
You can find the size of the image by executing the command below:
$ docker run --rm aio2-soseki-baseline du -h --max-depth=0 /
3. Run the image to perform prediction
We assume <TEST_DATA_DIR>
contains a test file such as aio_02_dev_unlabeled_v1.0.jsonl
, which is distributed on the AIO2 official website.
Be sure to specify <TEST_DATA_DIR>
by the absolute path.
$ docker run --rm -v <TEST_DATA_DIR>:/app/data -it aio2-soseki-baseline \
bash submission.sh data/aio_02_dev_unlabeled_v1.0.jsonl data/predictions.jsonl
The prediction result will be saved to <TEST_DATA_DIR>/predictions.jsonl
.
4. Save a Docker image to file
$ docker save aio2-soseki-baseline | gzip > aio2-soseki-baseline.tar.gz
The saved Docker image should be about 2.4GB.
This
work is licensed under a
Creative
Commons Attribution-NonCommercial 4.0 International License.