-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Script for converting from pull_2d_traces format to the format used b…
…y gail
- Loading branch information
Showing
1 changed file
with
194 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
import h5py | ||
import numpy as np | ||
import argparse | ||
|
||
path = '/home/deepdrive/trpo_vehicle/2d_drive_data/' | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--trajdatas', type=int, nargs='+', default=[]) | ||
|
||
parser.add_argument('--use_multifeat', type=bool, default= False) | ||
|
||
#(core, temporal, well_behaved, neighbor, carlidar_range, carlidar_range_rate, roadlidar_range, i) | ||
#parser.add_argument('--start_feature_indices',type=int,nargs='+',default= [1,8,14,17,45,65,85,125]) | ||
parser.add_argument('--extract_core',type=bool,default=True) | ||
parser.add_argument('--extract_temporal',type=bool,default=False) | ||
parser.add_argument('--extract_well_behaved',type=bool,default=True) | ||
parser.add_argument('--extract_neighbor_features',type=bool,default=False) | ||
parser.add_argument('--extract_carlidar',type=bool,default=True) | ||
parser.add_argument('--extract_roadlidar',type=bool,default=False) | ||
parser.add_argument('--extract_carlidar_rangerate',type=bool,default=True) | ||
|
||
#parser.add_argument('--carlidar_nbeams',type=int,default=0) | ||
#parser.add_argument('--roadlidar_nbeams',type=int,default=0) | ||
#parser.add_argument('--roadlidar_nlanes',type=int,default=0) | ||
|
||
args = parser.parse_args() | ||
|
||
tt_split= '../2d_drive_data/NGSIM_train_test_split.h5' | ||
filename1= 'data_trajdata_i101_trajectories-0750-0805.jld' | ||
filename2= 'data_trajdata_i101_trajectories-0805-0820.jld' | ||
filename3= 'data_trajdata_i101_trajectories-0820-0835.jld' | ||
filename4= 'data_trajdata_i80_trajectories-0400-0415.jld' | ||
filename5= 'data_trajdata_i80_trajectories-0500-0515.jld' | ||
filename6= 'data_trajdata_i80_trajectories-0515-0530.jld' | ||
all_filenames=[filename1,filename2,filename3,filename4,filename5,filename6] | ||
|
||
#trajdata_ix = 1 | ||
SEED = 456 | ||
MAX_TRAJ_LEN= 100 | ||
#TRAJS_PER_FILE=1000 | ||
np.random.seed(SEED) | ||
|
||
#if trajdata_ix == 0: | ||
#filenames= all_filenames | ||
#else: | ||
#filenames= [all_filenames[trajdata_ix - 1]] | ||
|
||
#trajdatas= [1,2,3,4,5,6] | ||
trajdatas = args.trajdatas | ||
filenames = [all_filenames[t - 1] for t in trajdatas] | ||
|
||
assign, indices, train_assign = None, None, None | ||
if filenames == []: | ||
filenames= ['data_trajdata_passive_aggressive1.jld', | ||
'data_trajdata_passive_aggressive2.jld'] | ||
else: | ||
with h5py.File(tt_split, 'r') as f: | ||
|
||
assign = f['data']['assignment'][...] | ||
indices= f['data']['trajdata_indeces'][...] | ||
train_assign = assign == 1 | ||
|
||
obs_B_T_Dos= [] | ||
act_B_T_Das= [] | ||
len_Bs = [] | ||
|
||
#feat_ix = map(lambda x : x - 1, [1,8,14,17,45,65,85,125]) | ||
feat_ix = map(lambda x : x, [0,8,14,17,45,65,85,125]) | ||
#parser.add_argument('--extract_core',type=bool,default=False) | ||
#parser.add_argument('--extract_temporal',type=bool,default=False) | ||
#parser.add_argument('--extract_well_behaved',type=bool,default=False) | ||
#parser.add_argument('--extract_neighbor_features',type=bool,default=False) | ||
#parser.add_argument('--extract_carlidar',type=bool,default=False) | ||
#parser.add_argument('--extract_roadlidar',type=bool,default=False) | ||
#parser.add_argument('--extract_carlidar_rangerate',type=bool,default=False) | ||
|
||
core_ixs = range(feat_ix[0],feat_ix[1]) | ||
temp_ixs = range(feat_ix[1],feat_ix[2]) | ||
well_ixs = range(feat_ix[2],feat_ix[3]) | ||
neig_ixs = range(feat_ix[3],feat_ix[4]) | ||
carl_ixs = range(feat_ix[4],feat_ix[5]) | ||
clrr_ixs = range(feat_ix[5],feat_ix[6]) | ||
roal_ixs = range(feat_ix[6],feat_ix[7]) | ||
|
||
get_ixs = [] | ||
if args.extract_core: | ||
get_ixs += core_ixs | ||
if args.extract_temporal: | ||
get_ixs += temp_ixs | ||
if args.extract_well_behaved: | ||
get_ixs += well_ixs | ||
if args.extract_neighbor_features: | ||
get_ixs += neig_ixs | ||
if args.extract_carlidar: | ||
get_ixs += carl_ixs | ||
if args.extract_carlidar_rangerate: | ||
get_ixs += clrr_ixs | ||
if args.extract_roadlidar: | ||
get_ixs += roal_ixs | ||
|
||
#(core, temporal, well_behaved, neighbor, carlidar_range, carlidar_range_rate, roadlidar_range, i) | ||
|
||
for i, filename in enumerate(filenames): | ||
julia_i = i + 1 | ||
|
||
if args.use_multifeat: | ||
filename = "multifeat_" + filename | ||
|
||
with h5py.File(path+filename, 'r') as f: | ||
intervals = f['intervals'][...] | ||
targets = f['targets'][...] | ||
features = f['features'][...] | ||
if args.use_multifeat: | ||
features = features[:,get_ixs] | ||
|
||
# Compute trajectory lengths from interval values. | ||
shift_intervals= np.concatenate((intervals[1:], np.array(features.shape[0])[None])) | ||
lens= shift_intervals - intervals | ||
|
||
trajs_obs= np.array(np.split(features,np.cumsum(lens[:]))[:-1]) | ||
trajs_act= np.array(np.split(targets,np.cumsum(lens[:]))[:-1]) | ||
|
||
# find training assignments in the current file. | ||
if indices is None: | ||
f_traj_train_assign = np.ones_like(lens) | ||
else: | ||
f_traj_train_assign = train_assign[indices == julia_i] | ||
f_tran_train_assign = np.repeat(f_traj_train_assign, lens) | ||
|
||
# extract trajectories and transitions based on assign data. | ||
##train_features = features[f_tran_train_assign] | ||
##train_targets = targets[f_tran_train_assign] | ||
train_lens = lens[f_traj_train_assign] | ||
train_trajs_obs= trajs_obs[f_traj_train_assign] | ||
train_trajs_act= trajs_act[f_traj_train_assign] | ||
|
||
#train_traj_ixs = traj_ixs[f_tran_train_assign] | ||
|
||
# sample one subtrajectory each. | ||
print("Training trajs in %s : %i"%(filename,len(train_lens))) | ||
start_ixs = np.array(map(np.random.randint,train_lens - MAX_TRAJ_LEN)) | ||
s_train_trajs_obs = [traj[start_ix:start_ix+MAX_TRAJ_LEN][None,...] | ||
for start_ix, traj in zip(start_ixs,train_trajs_obs)] | ||
s_train_trajs_act = [traj[start_ix:start_ix+MAX_TRAJ_LEN][None,...] | ||
for start_ix, traj in zip(start_ixs,train_trajs_act)] | ||
|
||
o_B_T_Do = np.concatenate(s_train_trajs_obs,axis=0) | ||
a_B_T_Da = np.concatenate(s_train_trajs_act,axis=0) | ||
|
||
obs_B_T_Dos.append(o_B_T_Do) | ||
act_B_T_Das.append(a_B_T_Da) | ||
len_Bs.append(train_lens) | ||
|
||
#halt= True | ||
#train_intervals = intervals | ||
|
||
#with h5py.File('../expert_trajs/features%i_seed%i_mtl%i_ntraj%i_openaiformat.h5'%(Do,SEED,MAX_TRAJ_LEN,NUM_TRAJ), 'w') as hf: | ||
#hf.create_dataset('obs_B_T_Do', data= obs_B_T_Do) | ||
#hf.create_dataset('a_B_T_Da', data= a_B_T_Da) | ||
#hf.create_dataset('r_B_T', data= r_B_T) | ||
#hf.create_dataset('len_B', data= len_B) | ||
|
||
obs_B_T_Do = np.concatenate(obs_B_T_Dos,axis=0) | ||
act_B_T_Da = np.concatenate(act_B_T_Das,axis=0) | ||
len_B = np.concatenate(len_Bs) | ||
|
||
B, T, Do = obs_B_T_Do.shape | ||
|
||
#if args.use_multifeat: | ||
#name = '../expert_trajs/radar_features%i_mtl%i_seed%i_trajdata%s_openaiformat.h5'%(Do,T,SEED,''.join(map(str,trajdatas))) | ||
#else: | ||
#name = '../expert_trajs/features%i_mtl%i_seed%i_trajdata%s_openaiformat.h5'%(Do,T,SEED,''.join(map(str,trajdatas))) | ||
|
||
#parser.add_argument('--extract_core',type=bool,default=False) | ||
#parser.add_argument('--extract_temporal',type=bool,default=False) | ||
#parser.add_argument('--extract_well_behaved',type=bool,default=False) | ||
#parser.add_argument('--extract_neighbor_features',type=bool,default=False) | ||
#parser.add_argument('--extract_carlidar',type=bool,default=False) | ||
#parser.add_argument('--extract_roadlidar',type=bool,default=False) | ||
#parser.add_argument('--extract_carlidar_rangerate',type=bool,default=False) | ||
|
||
name = '../expert_trajs/core{}_temp{}_well{}_neig{}_carl{}_roal{}_clrr{}_mtl{}_seed{}.h5'.format( | ||
int(args.extract_core), int(args.extract_temporal), int(args.extract_well_behaved), | ||
int(args.extract_neighbor_features), int(args.extract_carlidar), int(args.extract_roadlidar), | ||
int(args.extract_carlidar_rangerate), MAX_TRAJ_LEN, SEED | ||
) | ||
|
||
with h5py.File(name, 'w') as hf: | ||
hf.create_dataset('obs_B_T_Do', data= obs_B_T_Do) | ||
hf.create_dataset('a_B_T_Da', data= act_B_T_Da) | ||
#hf.create_dataset('r_B_T', data= r_B_T) | ||
hf.create_dataset('len_B', data= len_B) | ||
|
||
halt= True |