Skip to content

Latest commit

 

History

History
199 lines (173 loc) · 5.57 KB

DATASETS.md

File metadata and controls

199 lines (173 loc) · 5.57 KB

Supported Datasets

Dataset Type Categories Train
Images
Val
Images
Test
Images
Image Size
(HxW)
COCO-Stuff General Scene Parsing 171 118,000 5,000 20,000 -
ADE20K General Scene Parsing 150 20,210 2,000 3,352 -
PASCALContext General Scene Parsing 59 4,996 5,104 9,637 -
SUN RGB-D Indoor Scene Parsing 37 2,666 2,619 5,050+labels -
Mapillary Vistas Street Scene Parsing 65 18,000 2,000 5,000 1080x1920
CityScapes Street Scene Parsing 19 2,975 500 1,525+labels 1024x2048
CamVid Street Scene Parsing 11 367 101 233+labels 720x960
MHPv2 Multi-Human Parsing 59 15,403 5,000 5,000 -
MHPv1 Multi-Human Parsing 19 3,000 1,000 980+labels -
LIP Multi-Human Parsing 20 30,462 10,000 - -
CCIHP Multi-Human Parsing 22 28,280 5,000 5,000 -
CIHP Multi-Human Parsing 20 28,280 5,000 5,000 -
ATR Single-Human Parsing 18 16,000 700 1,000+labels -
HELEN Face Parsing 11 2,000 230 100+labels -
LaPa Face Parsing 11 18,176 2,000 2,000+labels -
iBugMask Face Parsing 11 21,866 - 1,000+labels -
CelebAMaskHQ Face Parsing 19 24,183 2,993 2,824+labels 512x512
FaceSynthetics Face Parsing (Synthetic) 19 100,000 1,000 100+labels 512x512
SUIM Underwater Imagery 8 1,525 - 110+labels -

Check DATASETS to find more segmentation datasets.

Datasets Structure (click to expand)

Datasets should have the following structure:

data
|__ ADEChallenge
    |__ ADEChallengeData2016
        |__ images
            |__ training
            |__ validation
        |__ annotations
            |__ training
            |__ validation

|__ CityScapes
    |__ leftImg8bit
        |__ train
        |__ val
        |__ test
    |__ gtFine
        |__ train
        |__ val
        |__ test

|__ CamVid
    |__ train
    |__ val
    |__ test
    |__ train_labels
    |__ val_labels
    |__ test_labels
    
|__ VOCdevkit
    |__ VOC2010
        |__ JPEGImages
        |__ SegmentationClassContext
        |__ ImageSets
            |__ SegmentationContext
                |__ train.txt
                |__ val.txt
    
|__ COCO
    |__ images
        |__ train2017
        |__ val2017
    |__ labels
        |__ train2017
        |__ val2017

|__ MHPv1
    |__ images
    |__ annotations
    |__ train_list.txt
    |__ test_list.txt

|__ MHPv2
    |__ train
        |__ images
        |__ parsing_annos
    |__ val
        |__ images
        |__ parsing_annos

|__ LIP
    |__ LIP
        |__ TrainVal_images
            |__ train_images
            |__ val_images
        |__ TrainVal_parsing_annotations
            |__ train_segmentations
            |__ val_segmentations

    |__ CIHP/CCIHP
        |__ instance-leve_human_parsing
            |__ Training
                |__ Images
                |__ Category_ids
            |__ Validation
                |__ Images
                |__ Category_ids

    |__ ATR
        |__ humanparsing
            |__ JPEGImages
            |__ SegmentationClassAug

|__ SUIM
    |__ train_val
        |__ images
        |__ masks
    |__ TEST
        |__ images
        |__ masks

|__ SunRGBD
    |__ SUNRGBD
        |__ kv1/kv2/realsense/xtion
    |__ SUNRGBDtoolbox
        |__ traintestSUNRGBD
            |__ allsplit.mat

|__ Mapillary
    |__ training
        |__ images
        |__ labels
    |__ validation
        |__ images
        |__ labels

|__ SmithCVPR2013_dataset_resized (HELEN)
    |__ images
    |__ labels
    |__ exemplars.txt
    |__ testing.txt
    |__ tuning.txt

|__ CelebAMask-HQ
    |__ CelebA-HQ-img
    |__ CelebAMask-HQ-mask-anno
    |__ CelebA-HQ-to-CelebA-mapping.txt

|__ LaPa
    |__ train
        |__ images
        |__ labels
    |__ val
        |__ images
        |__ labels
    |__ test
        |__ images
        |__ labels

|__ ibugmask_release
    |__ train
    |__ test

|__ FaceSynthetics
    |__ dataset_100000
    |__ dataset_1000
    |__ dataset_100

Note: For PASCALContext, download the annotations from here and put it in VOC2010.

Note: For CelebAMask-HQ, run the preprocess script. python3 scripts/preprocess_celebamaskhq.py --root <DATASET-ROOT-DIR>.