Dataset | Type | Categories | Train Images |
Val Images |
Test Images |
Image Size (HxW) |
---|---|---|---|---|---|---|
COCO-Stuff | General Scene Parsing | 171 | 118,000 | 5,000 | 20,000 | - |
ADE20K | General Scene Parsing | 150 | 20,210 | 2,000 | 3,352 | - |
PASCALContext | General Scene Parsing | 59 | 4,996 | 5,104 | 9,637 | - |
SUN RGB-D | Indoor Scene Parsing | 37 | 2,666 | 2,619 | 5,050+labels | - |
Mapillary Vistas | Street Scene Parsing | 65 | 18,000 | 2,000 | 5,000 | 1080x1920 |
CityScapes | Street Scene Parsing | 19 | 2,975 | 500 | 1,525+labels | 1024x2048 |
CamVid | Street Scene Parsing | 11 | 367 | 101 | 233+labels | 720x960 |
MHPv2 | Multi-Human Parsing | 59 | 15,403 | 5,000 | 5,000 | - |
MHPv1 | Multi-Human Parsing | 19 | 3,000 | 1,000 | 980+labels | - |
LIP | Multi-Human Parsing | 20 | 30,462 | 10,000 | - | - |
CCIHP | Multi-Human Parsing | 22 | 28,280 | 5,000 | 5,000 | - |
CIHP | Multi-Human Parsing | 20 | 28,280 | 5,000 | 5,000 | - |
ATR | Single-Human Parsing | 18 | 16,000 | 700 | 1,000+labels | - |
HELEN | Face Parsing | 11 | 2,000 | 230 | 100+labels | - |
LaPa | Face Parsing | 11 | 18,176 | 2,000 | 2,000+labels | - |
iBugMask | Face Parsing | 11 | 21,866 | - | 1,000+labels | - |
CelebAMaskHQ | Face Parsing | 19 | 24,183 | 2,993 | 2,824+labels | 512x512 |
FaceSynthetics | Face Parsing (Synthetic) | 19 | 100,000 | 1,000 | 100+labels | 512x512 |
SUIM | Underwater Imagery | 8 | 1,525 | - | 110+labels | - |
Check DATASETS to find more segmentation datasets.
Datasets Structure (click to expand)
Datasets should have the following structure:
data
|__ ADEChallenge
|__ ADEChallengeData2016
|__ images
|__ training
|__ validation
|__ annotations
|__ training
|__ validation
|__ CityScapes
|__ leftImg8bit
|__ train
|__ val
|__ test
|__ gtFine
|__ train
|__ val
|__ test
|__ CamVid
|__ train
|__ val
|__ test
|__ train_labels
|__ val_labels
|__ test_labels
|__ VOCdevkit
|__ VOC2010
|__ JPEGImages
|__ SegmentationClassContext
|__ ImageSets
|__ SegmentationContext
|__ train.txt
|__ val.txt
|__ COCO
|__ images
|__ train2017
|__ val2017
|__ labels
|__ train2017
|__ val2017
|__ MHPv1
|__ images
|__ annotations
|__ train_list.txt
|__ test_list.txt
|__ MHPv2
|__ train
|__ images
|__ parsing_annos
|__ val
|__ images
|__ parsing_annos
|__ LIP
|__ LIP
|__ TrainVal_images
|__ train_images
|__ val_images
|__ TrainVal_parsing_annotations
|__ train_segmentations
|__ val_segmentations
|__ CIHP/CCIHP
|__ instance-leve_human_parsing
|__ Training
|__ Images
|__ Category_ids
|__ Validation
|__ Images
|__ Category_ids
|__ ATR
|__ humanparsing
|__ JPEGImages
|__ SegmentationClassAug
|__ SUIM
|__ train_val
|__ images
|__ masks
|__ TEST
|__ images
|__ masks
|__ SunRGBD
|__ SUNRGBD
|__ kv1/kv2/realsense/xtion
|__ SUNRGBDtoolbox
|__ traintestSUNRGBD
|__ allsplit.mat
|__ Mapillary
|__ training
|__ images
|__ labels
|__ validation
|__ images
|__ labels
|__ SmithCVPR2013_dataset_resized (HELEN)
|__ images
|__ labels
|__ exemplars.txt
|__ testing.txt
|__ tuning.txt
|__ CelebAMask-HQ
|__ CelebA-HQ-img
|__ CelebAMask-HQ-mask-anno
|__ CelebA-HQ-to-CelebA-mapping.txt
|__ LaPa
|__ train
|__ images
|__ labels
|__ val
|__ images
|__ labels
|__ test
|__ images
|__ labels
|__ ibugmask_release
|__ train
|__ test
|__ FaceSynthetics
|__ dataset_100000
|__ dataset_1000
|__ dataset_100
Note: For PASCALContext, download the annotations from here and put it in VOC2010.
Note: For CelebAMask-HQ, run the preprocess script.
python3 scripts/preprocess_celebamaskhq.py --root <DATASET-ROOT-DIR>
.