Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update the Neptune integration #906

Merged
merged 18 commits into from
Oct 19, 2022
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Changed

- `NeptuneLogger` was updated to work with recent version of Neptune client. It now logs some additional data including
the model summary, configuration, and learning rate (when available)

### Fixed

## [0.12.0] - 2022-10-07
Expand Down
3 changes: 1 addition & 2 deletions requirements-dev.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,7 @@ future>=0.17.1
gpytorch>=1.5
jupyter
matplotlib>=2.0.2
mlflow
neptune-client>=0.4.103
neptune-client>=0.14.3
numpydoc
openpyxl
pandas
Expand Down
188 changes: 128 additions & 60 deletions skorch/callbacks/logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,147 +65,215 @@ def on_epoch_end(self, net, **kwargs):


class NeptuneLogger(Callback):
"""Logs results from history to Neptune
"""Logs model metadata and training metrics to Neptune.

Neptune is a lightweight experiment tracking tool.
Neptune is a lightweight experiment-tracking tool.
You can read more about it here: https://neptune.ai

Use this callback to automatically log all interesting values from
your net's history to Neptune.

The best way to log additional information is to log directly to the
experiment object or subclass the ``on_*`` methods.
run object.

To monitor resource consumption install psutil
To monitor resource consumption, install psutil:

>>> python -m pip install psutil
$ python -m pip install psutil

You can view example experiment logs here:
https://ui.neptune.ai/o/shared/org/skorch-integration/e/SKOR-13/charts
https://app.neptune.ai/shared/skorch-integration/e/SKOR-23/

Examples
--------
>>> # Install neptune
>>> python -m pip install neptune-client
>>> # Create a neptune experiment object
>>> import neptune
...
... # We are using api token for an anonymous user.
... # For your projects use the token associated with your neptune.ai account
>>> neptune.init(api_token='ANONYMOUS',
... project_qualified_name='shared/skorch-integration')
...
... experiment = neptune.create_experiment(
... name='skorch-basic-example',
... params={'max_epochs': 20,
... 'lr': 0.01},
... upload_source_files=['skorch_example.py'])
$ # Install Neptune
$ python -m pip install neptune-client

>>> # Create a neptune_logger callback
>>> neptune_logger = NeptuneLogger(experiment, close_after_train=False)

>>> # Pass a logger to net callbacks argument
>>> # Create a Neptune run
>>> import neptune.new as neptune
>>> from neptune.new.types import File
...
... # This example uses the API token for anonymous users.
... # For your own projects, use the token associated with your neptune.ai account.
>>> run = neptune.init_run(
BenjaminBossan marked this conversation as resolved.
Show resolved Hide resolved
... api_token=neptune.ANONYMOUS_API_TOKEN,
... project='shared/skorch-integration',
... name='skorch-basic-example',
... source_files=['skorch_example.py'],
... )

>>> # Create a NeptuneLogger callback
>>> neptune_logger = NeptuneLogger(run, close_after_train=False)

>>> # Pass the logger to the net callbacks argument
>>> net = NeuralNetClassifier(
... ClassifierModule,
... max_epochs=20,
... lr=0.01,
... callbacks=[neptune_logger])
... callbacks=[neptune_logger, Checkpoint(dirname="./checkpoints")])
>>> net.fit(X, y)

>>> # Save the checkpoints to Neptune
>>> neptune_logger.run["checkpoints].upload_files("./checkpoints")

>>> # Log additional metrics after training has finished
>>> from sklearn.metrics import roc_auc_score
... y_pred = net.predict_proba(X)
... auc = roc_auc_score(y, y_pred[:, 1])
... y_proba = net.predict_proba(X)
... auc = roc_auc_score(y, y_proba[:, 1])
...
... neptune_logger.experiment.log_metric('roc_auc_score', auc)
... neptune_logger.run["roc_auc_score"].log(auc)

>>> # log charts like ROC curve
... from scikitplot.metrics import plot_roc
... import matplotlib.pyplot as plt
>>> # Log charts, such as an ROC curve
BenjaminBossan marked this conversation as resolved.
Show resolved Hide resolved
>>> from sklearn.metrics import RocCurveDisplay
...
... fig, ax = plt.subplots(figsize=(16, 12))
... plot_roc(y, y_pred, ax=ax)
... neptune_logger.experiment.log_image('roc_curve', fig)
>>> roc_plot = RocCurveDisplay.from_estimator(net, X, y)
>>> neptune_logger.run["roc_curve"].upload(File.as_html(roc_plot.figure_))

>>> # log net object after training
>>> # Log the net object after training
... net.save_params(f_params='basic_model.pkl')
... neptune_logger.experiment.log_artifact('basic_model.pkl')
... neptune_logger.run["basic_model"].upload(File('basic_model.pkl'))

>>> # close experiment
... neptune_logger.experiment.stop()
>>> # Close the run
... neptune_logger.run.stop()

Parameters
----------
experiment : neptune.experiments.Experiment
Instantiated ``Experiment`` class.
run : neptune.new.Run
Instantiated ``Run`` class.

log_on_batch_end : bool (default=False)
Whether to log loss and other metrics on batch level.

close_after_train : bool (default=True)
Whether to close the ``Experiment`` object once training
Whether to close the ``Run`` object once training
finishes. Set this parameter to False if you want to continue
logging to the same Experiment or if you use it as a context
logging to the same run or if you use it as a context
manager.

keys_ignored : str or list of str (default=None)
Key or list of keys that should not be logged to Neptune. Note that in
addition to the keys provided by the user, keys such as those starting
with ``'event_'`` or ending on ``'_best'`` are ignored by default.

base_namespace: str
Namespace (folder) under which all metadata logged by the ``NeptuneLogger``
will be stored. Defaults to "training".

Attributes
----------
first_batch_ : bool
Helper attribute that is set to True at initialization and changes
to False on first batch end. Can be used when we want to log things
exactly once.

.. _Neptune: https://www.neptune.ai

"""

def __init__(
self,
experiment,
run,
*,
log_on_batch_end=False,
close_after_train=True,
keys_ignored=None,
base_namespace='training',
):
self.experiment = experiment
self.run = run
self.log_on_batch_end = log_on_batch_end
self.close_after_train = close_after_train
self.keys_ignored = keys_ignored
self.base_namespace = base_namespace

def initialize(self):
self.first_batch_ = True
@property
def _metric_logger(self):
return self.run[self._base_namespace]

@staticmethod
def _get_obj_name(obj):
return type(obj).__name__

def initialize(self):
keys_ignored = self.keys_ignored
if isinstance(keys_ignored, str):
keys_ignored = [keys_ignored]
self.keys_ignored_ = set(keys_ignored or [])
self.keys_ignored_.add('batches')

if self.base_namespace.endswith("/"):
self._base_namespace = self.base_namespace[:-1]
else:
self._base_namespace = self.base_namespace

return self

def on_train_begin(self, net, X, y, **kwargs):
# TODO: we might want to improve logging of the multi-module net objects, see:
# https://github.com/skorch-dev/skorch/pull/906#discussion_r993514643

self._metric_logger['model/model_type'] = self._get_obj_name(net.module_)
self._metric_logger['model/summary'] = self._model_summary_file(net.module_)

self._metric_logger['config/optimizer'] = self._get_obj_name(net.optimizer_)
self._metric_logger['config/criterion'] = self._get_obj_name(net.criterion_)
self._metric_logger['config/lr'] = net.lr
self._metric_logger['config/epochs'] = net.max_epochs
self._metric_logger['config/batch_size'] = net.batch_size
self._metric_logger['config/device'] = net.device

def on_batch_end(self, net, **kwargs):
if self.log_on_batch_end:
batch_logs = net.history[-1]['batches'][-1]

for key in filter_log_keys(batch_logs.keys(), self.keys_ignored_):
self.experiment.log_metric(key, batch_logs[key])

self.first_batch_ = False
self._log_metric(key, batch_logs, batch=True)

def on_epoch_end(self, net, **kwargs):
"""Automatically log values from the last history step."""
history = net.history
epoch_logs = history[-1]
epoch = epoch_logs['epoch']
epoch_logs = net.history[-1]

for key in filter_log_keys(epoch_logs.keys(), self.keys_ignored_):
self.experiment.log_metric(key, x=epoch, y=epoch_logs[key])
self._log_metric(key, epoch_logs, batch=False)

def on_train_end(self, net, **kwargs):
try:
self._metric_logger['train/epoch/event_lr'].log(net.history[:, 'event_lr'])
except KeyError:
pass
if self.close_after_train:
self.experiment.stop()
self.run.stop()

def _log_metric(self, name, logs, batch):
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm a little puzzled about this function.
Are those shortcuts like dur or valid some internal skorch strings which we're replacing to increase the readability of our experiment?
Could we add some comment here?

Copy link
Contributor Author

@twolodzko twolodzko Oct 19, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@shnela yes. Skorch logs dur dor duration of the epoch and several metrics like valid_loss or train_loss, where we extend valid to validation for readability.

kind, key = self._extract_name_parts(name)

if kind is None:
if key == 'dur':
key = 'epoch_duration'
self._metric_logger[key].log(logs[name])
else:
if kind == 'valid':
kind = 'validation'

if batch:
granularity = 'batch'
else:
granularity = 'epoch'

# for example: train / epoch / loss
self._metric_logger[kind][granularity][key].log(logs[name])

@staticmethod
def _extract_name_parts(name):
try:
kind, key = name.split('_', maxsplit=1)
return kind, key
except ValueError:
return None, name

@staticmethod
def _model_summary_file(model):
try:
# neptune-client=0.9.0+ package structure
from neptune.new.types import File
except ImportError:
# neptune-client>=1.0.0 package structure
from neptune.types import File

return File.from_content(str(model), extension='txt')


class WandbLogger(Callback):
Expand Down
Loading