libsg
is a backend library for scene generation, intended to be used with the scene toolkit frontend.
To setup your own instance of libsg
, please follow the data and configuration setup sections below.
The folder structure breaks down as follows (grouped in accordance with function):
conf # configuration files for libsg and models
├── arch_generator # layout generation model configurations
│ ├── arch_generator_mapping.yaml # defines arch gen parameters and model-to-config mapping
├── layout_generator # layout generation model configurations
│ ├── layout_mapping.yaml # defines layout parameters and model-to-config mapping
├── scene_parser # scene praser configurations
│ ├── parser_mapping.yaml # defines scene parser configurations
├── config.yaml # main libsg config
├── evaluation.yaml # main libsg config for evaluation script (libsg/evaluation/main.py)
├── inference.yaml # main libsg config for inference script (libsg/evaluation/inference.py)
libsg # main code
│ ├── api.py # main internal API for handling requests within libsg
│ ├── app.py # main external API for handling requests from STK or other sources. Light wrapper
around api.py.
│ ├── scene_builder.py # main class for generating or manipulating scenes, which calls all downstream modules
│ ├── scene_parser.py # main interface for parsing scene description
│ ├── arch_builder.py # code for retrieving and generating scene architecture
│ ├── object_placement.py # main class for handling objects selection and placement
│ ├── io.py # main class for scene format export
│ ├── arch.py # main class for defining internal architectures representation
│ ├── scene.py # main class for defining internal scene representation
│ ├── scene_types.py # helper classes for object types and specifications
│ ├── model # model code for text parsing, layout generation, shape generation, etc.
│ │ ├── atiss.py # ATISS model implementaion
│ │ ├── diffuscene # DiffuScene model implementation
│ │ ├── instructscene # InstructScene model implmentation
│ │ ├── arch_generator # code for architecture generators
│ │ │ ├── base.py # base class for architecture generators
│ │ │ ├── square.py # class for generating simple square room
│ │ ├── sg_parser # code for scene graph parsing
│ │ │ ├── base.py # base class for scene graph (SG) parsing
│ │ │ ├── instructscene.py # InstructScene-based SG parsing
│ │ │ ├── llm_sg_parser.py # LLM-based SG parsing
│ │ │ ├── room_type.py # simple room type lookup
│ │ ├── layout.py # main interface code for calling layout models, incl. pre- and post-processing of outputs
│ │ ├── utils.py # utility functions for models
│ ├── assets.py # database class for managing and retrieving assets
│ ├── simscene.py # class for scene simulation, e.g. for object placement collision detection
│ ├── simulator.py # class for base method simulation code
│ ├── config.py # code to load main configuration
│ ├── geo.py # auxiliary code for object transforms
│ ├── evaluation # code for defining evaluation script and metrics for generated scenes
│ │ ├── metrics # definitions of scene generation metrics for evaluation
│ │ ├── inference.py # inference code for running scene generation at scale for a method (no metrics)
│ │ ├── main.py # evaluation code for using a single config to generate scenes and compute metrics
│ │ ├── utils.py # utility functions for evaluation
Key components:
-
Configuration (
conf/
): Contains all configuration files for the library and its models. -
Main Library (
libsg/
):- API layers (
api.py
,app.py
): Handle internal and external requests. - Core functionality (
scene_builder.py
,scene_parser.py
,arch_builder.py
,object_placement.py
): Main classes for scene generation and manipulation. - Data representation (
arch.py
,scene.py
,scene_types.py
): Define internal data structures. - I/O handling (
io.py
): Manages import/export of scenes.
- API layers (
-
Models (
libsg/model/
):- Implements various scene generation models (ATISS, DiffuScene, InstructScene).
- Scene graph parsing models in
sg_parser/
. layout.py
provides a unified interface for all layout models.
-
Asset Management (
assets.py
): Handles database operations for scene assets. -
Simulation (
simscene.py
,simulator.py
): Provides simulation capabilities, particularly for object placement and collision detection. -
Utilities (
config.py
,geo.py
): Helper functions and configuration management.
libsg
was developed using the HSSD dataset. To setup your environment to use HSSD, follow the below steps:
-
Create a base directory for data and set
base_dir
in [conf/config.yaml] to your base directory. -
To use the structured3d dataset of room architectures, you must link the configuration to the structured3d.rooms.csv file, which can be retrieved at present here. Modify the
arch_db
parameters to link to the CSV for scene lookup. -
(Optional) Clone the hssd-hab repository into
base_dir
to get the GLB objects used during retrieval to check object collision detection during placement.
Several of the paths in the configuration files ([conf/config.yaml] and [conf/evaluation.yaml]) must be specified before
use. You will need to specify all those defined as ???
, including
base_url
structured3d_path
scene_builder.model_db.generation.output_dir
scene_builder.model_db.generation.metadata_file
scene_builder.solr_url
Further information about these paths can be found in the configuration files themselves.
Requires CUDA 12.1
for Shap-e GPU acceleraction
Use conda
to setup the enviroment needed for running the flask app.
conda env create -f environment.yml
conda activate sb
Alternatively, if you want to use libsg
with other modules, install libsg
locally via pip
:
pip install --upgrade build
python -m build
pip install -e .
Afterwards, run
pip install --extra-index-url https://ai2thor-pypi.allenai.org ai2thor==0+8524eadda94df0ab2dbb2ef5a577e4d37c712897
pip install Flask==2.3.3 # need to reinstall because the above version of ai2thor installs an earlier version of flask
python3 -c "import nltk; nlt.download('cmudict')"
python -m objathor.dataset.download_holodeck_base_data --version 2023_09_23
python -m objathor.dataset.download_assets --version 2023_09_23
python -m objathor.dataset.download_annotations --version 2023_09_23
python -m objathor.dataset.download_features --version 2023_09_23
Start the server using the following command (by default, the server runs at localhost:5000
):
./start_server.sh
Use the --background
option if you want the process to run detached from the shell.
Retrieve a complete scene from the scene dataset:
curl localhost:5000/scene/retrieve/
Generate a new scene and write to test.scene_instance.json
in STK format:
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "<scene generation prompt>", "format": "STK"}' -o test.scene_instance.json
The current API, by default, supports simple prompts that must mention the type of room you are looking to generate
(e.g. "bedroom"
, "dining room"
, "living room"
). For instance, to generate a bedroom, run
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "Generate a bedroom", "format": "STK"}' -o test.scene_instance.json
Current supported scene formats include STK and HAB.
You can additionally pass configuration options to the API to customize the backend generation of the scene:
sceneInference.parserModel
- specifies the model to use for scene graph parsing (InstructScene
,LLM
,RoomType
)sceneInference.layoutModel
- specifies the model to use for layout generation (ATISS
,DiffuScene
,Holodeck
InstructScene
)sceneInference.passTextToLayout
- if True, the code will attempt to pass the raw text input to the model. Currently only applicable toDiffuScene
.ATISS
does not condition on text, andInstructScene
uses the text by default currently.sceneInference.object.genMethod
- specify generation method for objects (generate
,retrieve
)sceneInference.object.retrieveType
- specify retrieval method for objects (id
,category
,embedding
)sceneInference.assetSources
- specify asset sources for retrieval. If not specified, all sources are used (e.g.3dfModel,fpModel
)sceneInference.arch.genMethod
- specify generation method for architecture (generate
,retrieve
(default))sceneInference.arch.genModel
- specify model for arch generation (SquareRoomGenerator
,Holodeck
)sceneInference.arch.singleRoom
- if True, generate only one room in architecture (Holodeck
only; default:False
)sceneInference.layout.moveObjectsToFloor
- if True, fix the z coordinate of all objects to floor height (default:True
for every method exceptHolodeck
, elseFalse
)sceneInference.retrievalSources
- specify asset sources for retrieval. If not specified, all sources are used (e.g.3dfModel,fpModel,objaverse
)sceneInference.useCategory
- if True, code will enforce usage of wnsynset key to retrieve objects in addition to embeddings or other metadata. Default: false (3dfModel
s do not have wnsynset keys)
Examples:
# basic ATISS bedroom with a square floor plan (no walls)
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "Generate a bedroom", "format": "STK", "config": {"sceneInference.parserModel": "RoomType", "sceneInference.arch.genMethod": "generate", "sceneInference.arch.genModel": "SquareRoomGenerator", "sceneInference.layoutModel": "ATISS", "sceneInference.object.genMethod": "retrieve", "sceneInference.object.retrieveType": "category", "sceneInference.assetSources": "fpModel", "sceneInference.useCategory": "true"}}' -o test.scene_instance.json
# DiffuScene using raw text input
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "Generate a dining room with a table and four chairs around it.", "format": "STK", "config": {"sceneInference.layoutModel": "DiffuScene", "sceneInference.passTextToLayout": "True"}}' -o test.scene_instance.json
# InstructScene with embedding retrieval from fpModel and 3dfModel
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "Generate a bedroom", "format": "STK", "config": {"sceneInference.parserModel": "InstructScene", "sceneInference.arch.genMethod": "retrieve", "sceneInference.layoutModel": "InstructScene", "sceneInference.object.genMethod": "retrieve", "sceneInference.object.retrieveType": "embedding", "sceneInference.assetSources": "fpModel,3dfModel", "sceneInference.useCategory": "false"}}' -o test.scene_instance.json
# Holodeck
curl -X POST localhost:5000/scene/generate -H 'Content-Type: application/json' -d '{"type": "text", "input": "Generate a bedroom with a connected bathroom. The bedroom should have a queen-size bed with an end table next to it, and there should be a desk and office chair in one corner of the bedroom as well.", "format": "STK", "config": {"sceneInference.parserModel": "RoomType", "sceneInference.arch.genMethod": "generate", "sceneInference.arch.genModel": "Holodeck", "sceneInference.layoutModel": "Holodeck", "sceneInference.object.genMethod": "retrieve", "sceneInference.object.retrieveType": "embedding", "sceneInference.assetSources": "fpModel", "sceneInference.useCategory": "false"}}' -o test.holodeck_scene.json
See [libsg/app.py] for the public-facing API and JSON payloads that can be used with above endpoints and [libsg/api.py] for the internal API, which exposes methods for easy use in downstream code.
- Layout Generation: ATISS
- Scene Parser: only conditions on room type (recommended:
RoomType
,RoomTypeLLM
) - Architecture Generation: can work with Holodeck, but may fail or give unexpected results if floor plan is too large
- Pass text to layout model: ignored
- Scene Parser: only conditions on room type (recommended:
- Layout Generation: DiffuScene
- Scene Parser: only conditions on room type (recommended:
RoomType
,RoomTypeLLM
) - Architecture Generation: can work with Holodeck, but may fail or give unexpected results if floor plan is too large (floor plan conditioning only active if text conditioning is
False
) - Pass text to layout model: use to condition on text directly (ignores floor plan)
- Scene Parser: only conditions on room type (recommended:
- Layout Generation: InstructScene
- Scene Parser: requires a scene graph output (recommended:
LLM
,InstructScene
) - Pass text to layout model: ignored
- Architecture Generation: does not condition on floor plan
- Pass text to layout model: use to condition on text directly (ignores floor plan)
- Scene Parser: requires a scene graph output (recommended:
- Layout Generation: Holodeck
- Scene Parser: conditions on text directly, so this module is ignored (recommended:
SKIP
) - Architecture Generation: requires use of Holodeck for generation
- Pass text to layout model: ignored
- Object retrieval: must be
embedding
- Retrieve within object category: must be
False
(no mapping currently from object names to wnsynset categories implemented)
- Scene Parser: conditions on text directly, so this module is ignored (recommended:
While all methods work with any object asset sources in theory, some asset sources are not scaled or rotated properly.
Other asset sources do not have an associated wnsynset key and thus will be silently excluded if sceneInference.useCategory
is True
.
For best results, use fpModel
only.
Package libsg
for deployment on PyPI (so other people can install via pip install libsg
).
Below packaging follows guidelines at https://packaging.python.org/en/latest/tutorials/packaging-projects/
Generate tokens on pypi and store in .pypirc
file as below:
[testpypi]
username = __token__
password = pypi-XXX
[pypi]
username = __token__
password = pypi-XXX
NOTE: uploads with a specific version are only allowed once.
Thus, be careful about current version
tag in pyproject.toml
file.
Deploying test package:
pip install --upgrade build twine
python -m build
python -m twine upload --repository testpypi dist/*
python -m pip install --index-url https://test.pypi.org/simple/ --no-deps libsg
Deploying package to real pypi index is same as above except for much simpler upload and install commands:
python -m twine upload dist/*
pip install libsg