conda create --name denser -y python=3.8
conda activate denser
pip install --upgrade pip
git clone https://github.com/sntubix/denser.git --recursive
cd denser
bash installation.sh
pip install -e .
The KITTI-MOT dataset should be organized as follows:
.(KITTI_MOT_ROOT)
└── training
├── calib
│ └── sequence_id.txt
├── completion_02 # (Optional) depth completion
│ └── sequence_id
│ └── frame_id.png
├── completion_03 # (Optional) depth completion
│ └── sequence_id
│ └── frame_id.png
├── image_02
│ └── sequence_id
│ └── frame_id.png
├── image_03
│ └── sequence_id
│ └── frame_id.png
├── label_02
│ └── sequence_id.txt
├── object_lidars
│ └── object_id.ply
....
└── oxts
└── sequence_id.txt
ds-train denser --data /data/kitti/image_02/0006'
ds-render --load_config /path/to/your/config/config.yml
ds-eval --load_config /path/to/your/config/config.yml
coming soon
coming soon
@misc{mohamad2024denser,
title={DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments},
author={Mahmud A. Mohamad and Gamal Elghazaly and Arthur Hubert and Raphael Frank},
year={2024},
eprint={2409.10041},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.10041},
}