Skip to content
/ RCDG Public

Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

License

Notifications You must be signed in to change notification settings

songhaoyu/RCDG

Repository files navigation

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference

Source code for RCDG model in AAAI20 Generating Persona Consistent Dialogues by Exploiting Natural Language Inference, a natural language inference (NLI) enhanced reinforcement learning dialogue model.

Requirements:

The code is tested under the following env:

  • Python 3.6
  • Pytorch 0.3.1

Install with conda: conda install pytorch==0.3.1 torchvision cudatoolkit=7.5 -c pytorch

This released code has been tested on a Titan-XP 12G GPU.

Data

We have provided some data samples in ./data to show the format. For downloading the full datasets, please refer to the following papers:

How to Run:

For a easier way to run the code, here the NLI model is GRU+MLP, i.e. RCDG_base, and we remove the time-consuming MC search.

Here are a few steps to run this code:

0. Prepare Data

python preprocess.py -train_src data/src-train.txt -train_tgt data/tgt-train.txt -train_per data/per-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -valid_per data/per-val.txt -train_nli data/nli-train.txt -valid_nli data/nli-valid.txt -save_data data/nli_persona -src_vocab_size 18300 -tgt_vocab_size 18300 -share_vocab

And as introduced in the paper, there are different training stages:

1. NLI model Pretrain

cd NLI_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -save_model saved_model/consistent_dialogue -rnn_size 500 -word_vec_size 300 -dropout 0.2 -epochs 5 -learning_rate_decay 1 -gpu 0

And you should see something like:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 1
31432
Epoch  1, nli_step     1/ 4108; nli: 0.28125
Epoch  1, nli_step    11/ 4108; nli: 0.38125
Epoch  1, nli_step    21/ 4108; nli: 0.43438
Epoch  1, nli_step    31/ 4108; nli: 0.48125
Epoch  1, nli_step    41/ 4108; nli: 0.53750
Epoch  1, nli_step    51/ 4108; nli: 0.56250
Epoch  1, nli_step    61/ 4108; nli: 0.49062
...

2. Generator G Pretrain

cd ../G_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -rnn_size 500 -word_vec_size 300  -dropout 0.2 -epochs 15 -g_optim adam -g_learning_rate 1e-3 -learning_rate_decay 1 -train_from PATH_TO_PRETRAINED_NLI -gpu 0

Here the PATH_TO_PRETRAINED_NLI should be replaced by your model path, e.g., ../NLI_pretrain/saved_model/consistent_dialogue_e3.pt.

If , you should see the ppl comes down during training, which means the dialogue model is in training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  4, teacher_force     1/ 4108; acc:   0.00; ppl: 18619.76; 125 src tok/s; 162 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    11/ 4108; acc:   9.69; ppl: 2816.01; 4159 src tok/s; 5468 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    21/ 4108; acc:   9.78; ppl: 550.46; 5532 src tok/s; 6116 tgt tok/s;      4 s elapsed
Epoch  4, teacher_force    31/ 4108; acc:  11.15; ppl: 383.06; 5810 src tok/s; 6263 tgt tok/s;      5 s elapsed
...
Epoch  4, teacher_force   941/ 4108; acc:  25.40; ppl:  90.18; 5993 src tok/s; 6645 tgt tok/s;     63 s elapsed
Epoch  4, teacher_force   951/ 4108; acc:  27.49; ppl:  77.07; 5861 src tok/s; 6479 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   961/ 4108; acc:  26.24; ppl:  83.17; 5473 src tok/s; 6443 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   971/ 4108; acc:  24.33; ppl:  97.14; 5614 src tok/s; 6685 tgt tok/s;     65 s elapsed
...

3. Discriminator D Pretrain

cd ../D_pretrain/

python train.py -epochs 20 -d_optim adam -d_learning_rate 1e-4 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_G -batch_size 32 -learning_rate_decay 0.99 -gpu 0

Similarly, replace PATH_TO_PRETRAINED_G with the G Pretrain model path.

The acc of D will be displayed during training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  5, d_step     1/ 4108; d: 0.49587
Epoch  5, d_step    11/ 4108; d: 0.51580
Epoch  5, d_step    21/ 4108; d: 0.49853
Epoch  5, d_step    31/ 4108; d: 0.55248
Epoch  5, d_step    41/ 4108; d: 0.55168
...

4. Reinforcement Training

cd ../reinforcement_train/

python train.py -epochs 30 -batch_size 32 -d_learning_rate 1e-4 -g_learning_rate 1e-4 -learning_rate_decay 0.9 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_D -gpu 0

Remember to replace PATH_TO_PRETRAINED_D with the D Pretrain model path.

Note that all the -epochs are global among all stages, if you want to tune this parameter. Actually, there are 30 - 20 = 10 training epochs in this Reinforcement Training stage if the D Pretrain model was trained 20 epochs in total.

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  7, self_sample     1/ 4108; acc:   2.12; ppl:   0.28; 298 src tok/s; 234 tgt tok/s;      2 s elapsed
Epoch  7, teacher_force    11/ 4108; acc:   3.32; ppl:   0.53; 2519 src tok/s; 2772 tgt tok/s;      3 s elapsed
Epoch  7, d_step    21/ 4108; d: 0.98896
Epoch  7, d_step    31/ 4108; d: 0.99906
Epoch  7, self_sample    41/ 4108; acc:   0.00; ppl:   0.27; 1769 src tok/s; 260 tgt tok/s;      7 s elapsed
Epoch  7, teacher_force    51/ 4108; acc:   2.83; ppl:   0.43; 2368 src tok/s; 2910 tgt tok/s;      9 s elapsed
Epoch  7, d_step    61/ 4108; d: 0.75311
Epoch  7, d_step    71/ 4108; d: 0.83919
Epoch  7, self_sample    81/ 4108; acc:   6.20; ppl:   0.33; 1791 src tok/s; 232 tgt tok/s;     12 s elapsed
...

5. Testing Trained Model

Now we have a trained dialogue model, we can test by:

Still in ./reinforcement_train/

python predict.py -model TRAINED_MODEL_PATH  -src ../data/src-val.txt -tgt ../data/tgt-val.txt -replace_unk -verbose -output ./results.txt -per ../data/per-val.txt -nli nli-val.txt -gpu 0

MISC

  • Initializing Model Seems Slow?

    This is a legacy problem due to pytorch < 0.4, not brought by this project. And the training efficiency will not be affected.

  • BibTex

     @article{Song_RCDG_2020,
     	title={Generating Persona Consistent Dialogues by Exploiting Natural Language Inference},
     	volume={34},
     	DOI={10.1609/aaai.v34i05.6417},
     	number={05},
     	journal={Proceedings of the AAAI Conference on Artificial Intelligence},
     	author={Song, Haoyu and Zhang, Wei-Nan and Hu, Jingwen and Liu, Ting},
     	year={2020},
     	month={Apr.},
     	pages={8878-8885}
     	}
    

About

Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Topics

Resources

License

Stars

Watchers

Forks

Languages