PyKT is a python library build upon PyTorch to train deep learning based knowledge tracing models. The library consists of a standardized set of integrated data preprocessing procedures on 7 popular datasets across different domains, 5 detailed prediction scenarios, 10 frequently compared DLKT approaches for transparent and extensive experiments.
Use the following command to install PyKT:
Create conda envirment.
conda create --name=pykt python=3.7.5
source activate pykt
pip install -U pykt-toolkit -i https://pypi.python.org/simple
- https://github.com/hcnoh/knowledge-tracing-collection-pytorch
- https://github.com/arshadshk/SAKT-pytorch
- https://github.com/shalini1194/SAKT
- https://github.com/arshadshk/SAINT-pytorch
- https://github.com/Shivanandmn/SAINT_plus-Knowledge-Tracing-
- https://github.com/arghosh/AKT
- https://github.com/JSLBen/Knowledge-Query-Network-for-Knowledge-Tracing
- https://github.com/xiaopengguo/ATKT
- https://github.com/jhljx/GKT
- DKT: Deep knowledge tracing
- DKT+: Addressing two problems in deep knowledge tracing via prediction-consistent regularization
- DKT-Forget: Augmenting knowledge tracing by considering forgetting behavior
- KQN: Knowledge query network for knowledge tracing: How knowledge interacts with skills
- DKVMN: Dynamic key-value memory networks for knowledge tracing
- ATKT: Enhancing Knowledge Tracing via Adversarial Training
- GKT: Graph-based knowledge tracing: modeling student proficiency using graph neural network
- SAKT: A self-attentive model for knowledge tracing
- SAINT: Towards an appropriate query, key, and value computation for knowledge tracing
- AKT: Context-aware attentive knowledge tracing