Skip to content

Commit

Permalink
RCAL-833 Recursively convert all meta attributes during model casting (
Browse files Browse the repository at this point in the history
…#352)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
stscieisenhamer and pre-commit-ci[bot] authored Jun 3, 2024
1 parent b745333 commit b23b8ed
Show file tree
Hide file tree
Showing 3 changed files with 75 additions and 23 deletions.
2 changes: 1 addition & 1 deletion CHANGES.rst
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
0.20.1 (unreleased)
===================

-
- Recursively convert all meta attributes during model casting. [#352]

0.20.0 (2024-05-15)
===================
Expand Down
70 changes: 48 additions & 22 deletions src/roman_datamodels/datamodels/_datamodels.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from the schema manifest defined by RAD.
"""

from collections.abc import Mapping

import asdf
import numpy as np
from astropy.table import QTable
Expand Down Expand Up @@ -135,37 +137,61 @@ class RampModel(_RomanDataModel):
@classmethod
def from_science_raw(cls, model):
"""
Construct a RampModel from a ScienceRawModel
Attempt to construct a RampModel from a DataModel
If the model has a resultantdq attribute, this is copied into
the RampModel.groupdq attribute.
Parameters
----------
model : ScienceRawModel or RampModel
The input science raw model (a RampModel will also work)
model : ScienceRawModel, TvacModel
The input data model (a RampModel will also work).
Returns
-------
ramp_model : RampModel
The RampModel built from the input model. If the input is already
a RampModel, it is simply returned.
"""
ALLOWED_MODELS = (FpsModel, RampModel, ScienceRawModel, TvacModel)

if isinstance(model, cls):
return model
if not isinstance(model, ALLOWED_MODELS):
raise ValueError(f"Input must be one of {ALLOWED_MODELS}")

# Create base ramp node with dummy values (for validation)
from roman_datamodels.maker_utils import mk_ramp

ramp = mk_ramp(shape=model.shape)

# check if the input model has a resultantdq from SDF
if hasattr(model, "resultantdq"):
ramp.groupdq = model.resultantdq.copy()

# Define how to recursively copy all attributes.
def node_update(self, other):
"""Implement update to directly access each value"""
for key in other.keys():
if key == "resultantdq":
continue
if key in self:
if isinstance(self[key], Mapping):
node_update(self[key], other.__getattr__(key))
continue
if isinstance(self[key], list):
self[key] = other.__getattr__(key).data
continue
if isinstance(self[key], np.ndarray):
self[key] = other.__getattr__(key).astype(self[key].dtype)
continue
self[key] = other.__getattr__(key)

if isinstance(model, ScienceRawModel):
from roman_datamodels.maker_utils import mk_ramp

instance = mk_ramp(shape=model.shape)

# Copy input_model contents into RampModel
for key in model:
# If a dictionary (like meta), overwrite entries (but keep
# required dummy entries that may not be in input_model)
if isinstance(instance[key], dict):
instance[key].update(getattr(model, key))
elif isinstance(instance[key], np.ndarray):
# Cast input ndarray as RampModel dtype
instance[key] = getattr(model, key).astype(instance[key].dtype)
else:
instance[key] = getattr(model, key)

return cls(instance)
node_update(ramp, model)

raise ValueError("Input model must be a ScienceRawModel or RampModel")
# Create model from node
ramp_model = RampModel(ramp)
return ramp_model


class RampFitOutputModel(_RomanDataModel):
Expand Down
26 changes: 26 additions & 0 deletions tests/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -958,3 +958,29 @@ def test_datamodel_save_filename(tmp_path):

with datamodels.open(filename) as new_ramp:
assert new_ramp.meta.filename == filename.name


@pytest.mark.parametrize(
"model_class, expect_success",
[
(datamodels.FpsModel, True),
(datamodels.RampModel, True),
(datamodels.ScienceRawModel, True),
(datamodels.TvacModel, True),
(datamodels.MosaicModel, False),
],
)
def test_rampmodel_from_science_raw(model_class, expect_success):
"""Test creation of RampModel from raw science/tvac"""
model = utils.mk_datamodel(
model_class, meta={"calibration_software_version": "1.2.3", "exposure": {"read_pattern": [[1], [2], [3]]}}
)
if expect_success:
ramp = datamodels.RampModel.from_science_raw(model)

assert ramp.meta.calibration_software_version == model.meta.calibration_software_version
assert ramp.meta.exposure.read_pattern == model.meta.exposure.read_pattern

else:
with pytest.raises(ValueError):
datamodels.RampModel.from_science_raw(model)

0 comments on commit b23b8ed

Please sign in to comment.