Skip to content

Calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.

License

Notifications You must be signed in to change notification settings

stdlib-js/blas-ext-base-dsumkbn2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dsumkbn2

NPM version Build Status Coverage Status

Calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.

Installation

npm install @stdlib/blas-ext-base-dsumkbn2

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var dsumkbn2 = require( '@stdlib/blas-ext-base-dsumkbn2' );

dsumkbn2( N, x, stride )

Computes the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dsumkbn2( 3, x, 1 );
// returns 1.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the sum of every other element in x,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var v = dsumkbn2( 4, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dsumkbn2( 4, x1, 2 );
// returns 5.0

dsumkbn2.ndarray( N, x, stride, offset )

Computes the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dsumkbn2.ndarray( 3, x, 1, 0 );
// returns 1.0

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x starting from the second value

var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dsumkbn2.ndarray( 4, x, 2, 1 );
// returns 5.0

Notes

  • If N <= 0, both functions return 0.0.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array-filled-by' );
var dsumkbn2 = require( '@stdlib/blas-ext-base-dsumkbn2' );

var x = filledarrayBy( 10, 'float64', discreteUniform( -100, 100 ) );
console.log( x );

var v = dsumkbn2( x.length, x, 1 );
console.log( v );

References

  • Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." Computing 76 (3): 279–93. doi:10.1007/s00607-005-0139-x.

See Also

  • @stdlib/blas-ext/base/dnansumkbn2: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using a second-order iterative Kahan–Babuška algorithm.
  • @stdlib/blas-ext/base/dsum: calculate the sum of double-precision floating-point strided array elements.
  • @stdlib/blas-ext/base/dsumkbn: calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
  • @stdlib/blas-ext/base/dsumors: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.
  • @stdlib/blas-ext/base/dsumpw: calculate the sum of double-precision floating-point strided array elements using pairwise summation.
  • @stdlib/blas-ext/base/gsumkbn2: calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.
  • @stdlib/blas-ext/base/ssumkbn2: calculate the sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.