About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Assign element values from a broadcasted input
ndarray
to corresponding elements in an outputndarray
view.
npm install @stdlib/ndarray-base-slice-assign
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var sliceAssign = require( '@stdlib/ndarray-base-slice-assign' );
Assigns element values from a broadcasted input ndarray
to corresponding elements in an output ndarray
view.
var Slice = require( '@stdlib/slice-ctor' );
var MultiSlice = require( '@stdlib/slice-multi' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
// Define an input array:
var buffer = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ];
var shape = [ 3, 2 ];
var strides = [ 2, 1 ];
var offset = 0;
var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>
var sh = x.shape;
// returns [ 3, 2 ]
var arr = ndarray2array( x );
// returns [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
// Define an output array:
var y = ndzeros( [ 2, 3, 2 ], {
'dtype': x.dtype
});
// Create a slice:
var s0 = null;
var s1 = new Slice( null, null, -1 );
var s2 = new Slice( null, null, -1 );
var s = new MultiSlice( s0, s1, s2 );
// returns <MultiSlice>
// Perform assignment:
var out = sliceAssign( x, y, s, false );
// returns <ndarray>
var bool = ( out === y );
// returns true
arr = ndarray2array( y );
// returns [ [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ], [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ] ]
The function accepts the following arguments:
- x: input
ndarray
. - y: output
ndarray
. - slice: a
MultiSlice
instance specifying the outputndarray
view. - strict: boolean indicating whether to enforce strict bounds checking.
- The input
ndarray
must be broadcast compatible with the outputndarray
view. - The input
ndarray
must have a data type which can be safely cast to the outputndarray
data type. Floating-point data types (both real and complex) are allowed to downcast to a lower precision data type of the same kind (e.g., element values from a'float64'
inputndarray
can be assigned to corresponding elements in a'float32'
outputndarray
).
var E = require( '@stdlib/slice-multi' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var slice = require( '@stdlib/ndarray-base-slice' );
var sliceAssign = require( '@stdlib/ndarray-base-slice-assign' );
// Alias `null` to allow for more compact indexing expressions:
var _ = null;
// Create an output ndarray:
var y = ndzeros( [ 3, 3, 3 ] );
// Update each matrix...
var s1 = E( 0, _, _ );
sliceAssign( scalar2ndarray( 100 ), y, s1, false );
var a1 = ndarray2array( slice( y, s1, false ) );
// returns [ [ 100, 100, 100 ], [ 100, 100, 100 ], [ 100, 100, 100 ] ]
var s2 = E( 1, _, _ );
sliceAssign( scalar2ndarray( 200 ), y, s2, false );
var a2 = ndarray2array( slice( y, s2, false ) );
// returns [ [ 200, 200, 200 ], [ 200, 200, 200 ], [ 200, 200, 200 ] ]
var s3 = E( 2, _, _ );
sliceAssign( scalar2ndarray( 300 ), y, s3, false );
var a3 = ndarray2array( slice( y, s3, false ) );
// returns [ [ 300, 300, 300 ], [ 300, 300, 300 ], [ 300, 300, 300 ] ]
// Update the second rows in each matrix:
var s4 = E( _, 1, _ );
sliceAssign( scalar2ndarray( 400 ), y, s4, false );
var a4 = ndarray2array( slice( y, s4, false ) );
// returns [ [ 400, 400, 400 ], [ 400, 400, 400 ], [ 400, 400, 400 ] ]
// Update the second columns in each matrix:
var s5 = E( _, _, 1 );
sliceAssign( scalar2ndarray( 500 ), y, s5, false );
var a5 = ndarray2array( slice( y, s5, false ) );
// returns [ [ 500, 500, 500 ], [ 500, 500, 500 ], [ 500, 500, 500 ] ]
// Return the contents of the entire ndarray:
var a6 = ndarray2array( y );
/* returns
[
[
[ 100, 500, 100 ],
[ 400, 500, 400 ],
[ 100, 500, 100 ]
],
[
[ 200, 500, 200 ],
[ 400, 500, 400 ],
[ 200, 500, 200 ]
],
[
[ 300, 500, 300 ],
[ 400, 500, 400 ],
[ 300, 500, 300 ]
]
]
*/
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.